The physical properties of CaF₂-CaO-Al₂O₃-SiO₂ slag system for ESR of 12Cr Xiaohua WANG, Ying LI, Chen YAN, Beiyue MA and Jie ZENG School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, China Abstract: It is an effective way to decrease power consumption, pollution emission, to increase productivity and improve ingot quality by using lower CaF₂ content even CaF₂ free slag during the electro-slag remelting (ESR) process. In this study, a conventional slag, namely ANF-8 with composition of 60 mass%CaF₂-20 mass%CaO-20 mass %Al₂O₃ was chosen as a reference slag. A new quaternary slag system of CaF₂-CaO-Al₂O₃-SiO₂ with four lower CaF₂ content levels in mass fraction, 59%, 55%, 50%, 45% were prepared and labeled as S1, S2, S3 and S4 respectively. The effects of CaF₂ content and temperature on the physicochemical properties of the slag were investigated. The results showed that the melting points and the conductivity of the samples S_1-S_4 were all lower than those of the sample ANF-8. The melting point and the conductivity (1600°C) of Sample S_4 achieved 1372°C and 1.936 Ω^{-1} cm⁻¹, respectively. The conductivities of Sample S₄ at 1550–1650°C reached 1.741–2.131Ω⁻¹·cm⁻¹, and were lower than those of ANF-8 and S₁-S₃. Considering the physicochemical properties of the four new slags in the CaF₂-CaO-Al₂O₃-SiO₂ quaternary system and low CaF₂ in the slag to decrease the power consumption and pollution emission, the slag S₄ was the most suitable for the ESR process. **Keywords:** Melting point, viscosity, conductivity, calcium fluoride, electro-slag remelting 1. Introduction Electro-slag remelting (ESR) is an advanced technology, which has been widely used in the production of high performance alloy steels, high speed steels, dies steels, creep resistant steels and super alloys [1]. Reducing power consumption and pollution, increasing productivity and improving ingot quality is an important development trend of ESR technology. Hence, the development of new slag and their application to the ESR process have been attracted much attention [2-4]. Many researchers of ESR have focused on the study of the physicochemical properties of slag, such as melting point, viscosity and conductivity, etc [5-10]. So far, there are few reports on the effects of CaF₂ content and temperature on the physicochemical properties of the quaternary slag in CaF₂-CaO-Al₂O₃-SiO₂ system. ANF-6 slag (70%CaF₂-30%Al₂O₃, mass fraction) has been widely used in ESR process. However, high CaF₂ content can increase the power consumption and severe fluorine pollution during the ESR process, which is not suitable for the green metallurgy and safe production. In the present work, the new quaternary slag in the CaF₂-CaO-Al₂O₃-SiO₂ system containing low CaF₂ was prepared, and the effects of CaF₂ content and temperature on the physicochemical properties of the slag were investigated. 2. Experimental procedures 2.1 Design and preparation of the new quaternary slag system According to the CaF_2 -CaO- Al_2O_3 ternary phase diagram as shown in Fig. 1 [11], the basic components of slag with reasonable melting point were determined firstly. Then the high power consumption and severe fluorine pollution were eliminated by adding CaO and SiO_2 and reducing the amount of CaF_2 in the ANF-6 slag. Finally, four kinds of slag in the CaF_2 -CaO- Al_2O_3 - SiO_2 quaternary system with different CaF_2 content were designed (see Table 1). In order to study on the effects of CaF_2 content and temperature on the physicochemical properties of slag, a conventional slag, namely ANF-8 (60 mass% CaF_2 -20 mass%CaO-20 mass% Al_2O_3), was chosen as a reference slag system. Fig. 1 CaF₂-CaO-Al₂O₃ ternary phase diagram [11] Table 1 The compositions of the slag samples (mass fraction)/% | Slag samples | CaF ₂ | CaO | Al_2O_3 | SiO ₂ | |------------------------|------------------|-----|-----------|------------------| | ANF-8(S ₀) | 60 | 20 | 20 | - | | S_1 | 59 | 15 | 18 | 8 | | S ₂ | 55 | 16 | 20 | 9 | | S ₃ | 50 | 18 | 22 | 10 | | S_4 | 45 | 20 | 24 | 11 | Fluorite (mass fraction of $CaF_2 > 95\%$), alumina powder (mass fraction of $A1_2O_3 > 97\%$), silica (mass fraction of $SiO_2 > 97\%$) and calcium oxide reagent (AR) were chosen as the raw materials. The raw materials were heated at $850^{\circ}C$ for 10h in air to remove the moisture and some volatile impurities, such as CO_2 . The raw materials were weighed in terms of the compositions of the slag (see Table 1), and mixed fully. Then the slag samples S_0 – S_4 were prepared. # 2.2 Measurements of the physicochemical properties The melting point and the viscosity of the slag samples S_0 – S_4 were measured by hemispherical method and the rotating cylinder method, respectively. The conductivity at 1550–1650°C was calculated using the following empirical formula [12]. $$\sigma = \exp(1.911 - 1.38x - 5.69x^2) + 0.0039(t - 1700) \tag{1}$$ $$x = x_{\text{Al},O_3} + 0.75x_{\text{SiO}_2} + 0.5(x_{\text{TiO}_2} + x_{\text{ZrO}_2}) + 0.2x_{\text{CaO}}$$ (2) where σ is the conductivity of the molten slag, Ω^{-1} ·cm⁻¹, t is the temperature, °C, t = 1550 - 1780°C, x is the molar fraction, $x_{Al_2O_2} = 0 - 0.38$, $x_{SiO_2} = 0 - 0.17$, $x_{TiO_2} = 0 - 0.18$, $x_{ZrO_2} = 0 - 0.15$, and $x_{CaO} = 0 - 0.65$. ### 3. Results and discussion The measured melting points of slag are listed in Table 2. The melting points of the slag samples S_1 – S_4 containing 45%–59% CaF_2 were 1361–1386°C, and all lower than that of ANF-8 (1396°C). Meanwhile, the melting points of the new slag samples were lower than those of the metal or alloys by the ESR process about 100–200°C, which was preferable for forming slag pool early. Basing on the melting point of slag, the designed new slag samples all could meet the metallurgical requirement for the ESR process. The slag S_4 was more suitable for the ESR process due to lower melting point of slag and CaF_2 content. Table 2 The experimental measured melting points of slag samples S₀-S₄ | Slag samples | ANF- $8(S_0)$ | S_1 | S_2 | S_3 | S_4 | |--|---------------|-------|-------|-------|-------| | Hemispheric temperature(Melting point) /°C | 1396 | 1361 | 1379 | 1386 | 1372 | Fig.2 shows the variation of viscosity of the new slag with CaF_2 content and temperature. It can be seen that CaF_2 content and temperature had a great impact on the viscosity. The viscosities of the samples S_1 – S_4 at 1350–1375°C increased obviously with decreasing the amount of CaF_2 (Fig. 2a). For the slag S_4 containing 59% CaF_2 , the viscosity at 1350°C reached 0.114Pa·s. When the CaF_2 content was decreased to 45%, the viscosity at 1350°C increased up to 0.274Pa·s sharply. At 1400–1500°C, CaF_2 content had a slight influence on the viscosities of the samples S_1 – S_4 , and they were stable. In Fig. 2(b) among the samples S_1 – S_4 , the viscosity of the slag S_1 changed most slightly followed by the samples S_2 , S_3 and S_4 . It is well known that the solidification temperature of most steels and alloys were often higher than 1375°C. In Fig. 2(b) the viscosities with different CaF_2 content had changed slightly with the temperature variation from 1400 to 1500°C. In this case, it could benefit for improving the surface quality of ESR ingot. Considering the viscosity stability of slag at 1375–1500°C, the new slag samples S_1 – S_4 were all suitable for the ESR process. Fig. 2 Variation of viscosity of the new slag with CaF₂ content and temperature Fig. 3 shows the calculated conductivities of the slag with different CaF_2 content and temperature. CaF_2 content had a great impact on the conductivities of slag. With decreasing the CaF_2 content, the conductivities at $1550-1650^{\circ}C$ decreased gradually. For the slag S_0 containing 60% CaF_2 , the conductivity at $1600^{\circ}C$ was $3.661\Omega^{-1} \cdot cm^{-1}$. When the mass fraction of CaF_2 decreased to 59%, the conductivity at $1600^{\circ}C$ was decreased to $3.002\Omega^{-1} \cdot cm^{-1}$ sharply. While further decreasing the amounts of CaF_2 to 55%, 50% and 45%, the conductivities at $1600^{\circ}C$ were decreased to 2.637, 2.273, and 1.936 $\Omega^{-1} \cdot cm^{-1}$, respectively. When the mass fraction of CaF_2 remained constant, the conductivity was increased with increasing the temperature. Moreover, the conductivities of the samples S_1 - S_4 were all lower than those of ANF-8. The conductivities of S_4 at $1550-1650^{\circ}C$ reached $1.741-2.131\Omega^{-1} \cdot cm^{-1}$, and were lower than those of S_1 - S_3 . So it was good for reducing the power consumption and the production cost. Fig. 3 Effects of CaF₂ content and temperature on the conductivities of the slag samples S₀-S₄ ### 4. Conclusions A new quaternary slag system of CaF_2 -CaO- Al_2O_3 - SiO_2 with four lower CaF_2 content levels of mass fraction, 59%,55%, 50%, 45% were prepared and denoted as slag, S_1 , S_2 , S_3 and S_4 respectively. The melting temperature and high-temperature viscosity and electrical conductivity were measure and compared with those of - 60% CaF₂-20% CaO-20% Al₂O₃ slag (S₀). The conclusions attained are listed bellow. - (1) The melting points of the samples S_1 – S_4 were all lower than that of the conventional slag ANF-8. The melting points of the samples S_1 and S_4 reached 1361°C and 1372°C, respectively. - (2) With decreasing the amount of CaF_2 , the viscosities of the samples S_1 – S_4 at 1350–1375°C increased obviously. At 1400–1500°C, CaF_2 content and temperature had a slight influence on the viscosity of the slag. Considering the viscosity stability of the slag at 1375–1500°C, the new slag samples S_1 – S_4 were all proper for the ESR process. - (3) With decreasing the CaF₂ content and temperature, the conductivities at $1550-1650^{\circ}$ C decreased gradually. The conductivities of the sample S₄ at $1550-1650^{\circ}$ C reached $1.741-2.131\Omega^{-1}\cdot\text{cm}^{-1}$, and were lower than those of S₁-S₃. - (4) Considering the physicochemical properties of the new quaternary slag in the CaF_2 -CaO- Al_2O_3 - SiO_2 system and low CaF_2 in the slag to decrease the power consumption and the pollution emission, the slag S_4 was the most suitable for the ESR process. ## Acknowledgement The authors would like to thank the National Natural Science Foundation of China for the financial support to the present study (project number:51074038). #### References - [1] Z. F. Ni, Y. S. Sun, F. Xue, J. Zhou, J. Bai. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel. Mater. Sci. Eng. A, 2011, 528(18), p 5664–5669. - [2] F. Shahbazian, D. Sichen, K. C. Mills, S. Seetharaman. Experimental studies of viscosities of some CaO-CaF₂-SiO₂ slags. Ironmaking and Steelmaking, 1999, 26(3), p 193–199. - [3] H. Kim, W. H. Kim, II Sohn, D. J. Min. The effect of MgO on the viscosity of the CaO-SiO₂-20wt%Al₂O₃-MgO slag system. Steel Res. Int., 2010, 81(4), p 261–264. - [4] S. Seetharaman, K. Mukai, D. Sichen. Viscosities of slag-an overview. VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004, p 31-42. - [5] R. E. Aune, M. Hayashi, S. Sridhar. Thermodynamic approach to physical properties of silicate melts. Ironmaking and Steelmaking, 2005, 32(2), p 141–150. - [6] S. Chattopadhyay, A. Mitchell. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags. Metall. Trans. B, 1990, 21(4), p 621–627. - [7] Y. Miyabayashi, M. Nakamoto, T. Tanaka, T. Yamamoto. A model for estimating the viscosity of molten aluminosilicate containing calcium fluoride. ISIJ Int., 2009, 49(3), p 343–348. - [8] F. Shahbazian. Experimental studies of the viscosities in the CaO-FeO-SiO₂-CaF₂ slags. Scand. J. Metall., 2001, 30(5), p 302–308. - [9] F. Shahbazian, D. Sichen, S. Seetharaman. Viscosities of some fayalitic slags containing CaF₂. ISIJ Int., 1999, 39(7), p 687–696 - [10] S. Hara, H. Hashimoto, K. Ogino. Electrical conductivity of molten slags for electro-slag remelting. Trans. ISIJ, 1983, 23(12), p 1053–1058. - [11] A. Mitchell. The chemistry of ESR slags. Can. Metall. Quart., 1981, 20(1), p 101-112. - [12] K.Ogino, S.Hara, S.Nagai. Estimation equation of conductivity of the multi-component slag for electroslag remelting(Japanese).97th ISIJ Meeting, April, 1979(Tokyo), ISIJ, 1979, p S129.