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Molecular dynamics models of binary CaO-FeO, MgO-SiO2, FeO-SiO2, CaO-SiO2 and
ternary CaO-FeO-SiO2 systems were constructed at 1873 K using the Born-Mayer pair poten-
tials. The potentials included the effective dipole-dipole interactions for Ca-Fe, Mg-Si, Fe-Si
and Ca-Si pairs. Parameters of the dipole-dipole interactions were found by adjusting calcu-
lated Gibbs free energies of formation of binary CaO-FeO, FeO-SiO2, MgO-SiO2 and CaO-
SiO2 systems to experimental data. The thermodynamic properties of CaO-FeO-SiO2 solutions
were studied by converting several iron ions into calcium ions. The Gibbs free energy incre-
ments and ratios of activity coefficients γCaO/γFeO in the ternary system were calculated.

1 Introduction

 These days, quasi-chemical, cell, and some other models in the slag chemistry incorpo-
rated into thermochemical packages such as F*A*C*T, Thermo-Calc, and others, equipped
with extensive databases provide an excellent tool for calculation of thermodynamic proper-
ties of binary and multi-component oxide systems. Success of these models in calculation of
thermodynamic properties and phase diagrams is to a large extent based on the use of assessed
thermodynamic parameters. Computer simulation methods, such as molecular dynamics or
Monte Carlo simulation, lie in different weight category: agreement of calculated internal en-
ergy or the Gibbs free energy with experimental data within 0.1% of absolute value would be
a success, and this means a discrepancy in a few kilo-joules. Nevertheless, molecular dynam-
ics and Monte Carlo methods are more universal providing structural and dynamic character-
istics of molten oxides, which are so difficult to determine experimentally. More accurate
thermodynamic data are expected to obtaine using “semi-empirical” molecular dynamics or
Monte Carlo method. In this paper, molecular dynamics (MD) simulation of a ternary system
is tested with parameters for the inter-ionic potential adjusted using experimental thermody-
namic data for boundary binary systems. Particular, thermodynamic properties of the ternary
CaO-FeO-SiO2 system are calculated by the MD method with parameters of the Born-Mayer
potentials, determined using thermodynamic data for binary CaO-FeO, FeO-SiO2 and CaO-
SiO2 systems.

 Oxide solutions in the MD simulation are considered in the approximation of pure
ionic bonds, although chemical bonds in these systems have more complex ion-covalent na-
ture. However, consideration of covalent bonds demands new simulation techniques like ab-
initio calculations, which combine the molecular dynamics with quantum mechanics. Up to
now these methods are very time-expensive and have been applied to systems with a small
number of atoms.

 Computer calculations of thermodynamic properties of MeO and MeO2 type solutes in
the CaO-SiO2 system were conducted in works[1,2] using the simple Born-Mayer pair poten-
tial, uij(r), which includes Coulomb interaction between ions i and j, and core repulsion:

 
 uij(r) = Zi Zj e

2/r + Bij exp(-r/Rij).
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 In this expression r is a distance between ions, Zi is the ionic charge in the units of
elemental charge e, Bij  and Rij are repulsion parameters for ionic cores of pair i-j. Practically,
only metallic cation-oxygen anion interactions were accounted. Parameter Rij was assumed to
be 29 nm for all ionic pairs. Parameters Bij were determined for individual oxides using ex-
perimental structural data, and were assumed to be independent on the solution composition.
Qualitatively, calculations correctly predicted the change in thermodynamic activity coeffi-
cients of MeO oxides in the CaO-SiO2 solutions, however, quantitative agreement had not
been achieved.

 Results of the molecular dynamics simulation strongly depend on the parameters of the
inter-ionic interactions. It could be expected that parameters of the inter-ionic potential de-
pend on the solution composition. In this work more sophisticated Born-Mayer potential is
used (equation (1)). It includes effective dipole-dipole interaction, which is considered to be
dependent on the solution composition. The dipole-dipole interaction is introduced only as an
effective interaction between cations to take into account the change in a potential with com-
position of the oxide system. The use of the Born-Mayer potential with dipole-dipole interac-
tion for the CaO-FeO system gave reasonable agreement between calculated and experimental
activity coefficients of FeO and CaO even at a constant interaction coefficient[3]. It will be
briefly reviewed below in section 4.

 In this paper, this approach is applied to calculation of thermodynamic properties of
binary CaO-FeO, MgO-SiO2, FeO-SiO2, CaO-SiO2 and ternary CaO-FeO-SiO2 oxide systems.

 
2 Interionic Potential

Interactions between ions were described by the Born-Mayer potentials:

uij(r) = Zi Zj e
2/r + Bij exp(-r/Rij) + Cij/r

6 + Dij/r
8 (1)

 Terms Cij/r
6 and Dij/r

8 describe effective dipole-dipole and dipole-quadruple interac-
tions respectively. Coefficients Cij and Dij must be negative. Dipole-dipole interaction is small
in comparison with the energy of ionic cores repulsion. Dipole-quadruple interaction is 5-10%
of dipole-dipole interaction[4,5]. In previous works,[1,2] dipole-dipole and dipole-quadruple
interactions were omitted. The difference in the potential parameters for different oxides was
accounted only by the repulsion parameters Bij. This means that for MeO or MeO2 oxides only
the size of Me2+ or Me4+ ions was different. This is an obvious simplification. Direct chemical
interaction between components of a solution is introduced here through dipole-dipole poten-
tial. Dipole-quadruple interaction in the following calculations is neglected.

 
3 Molecular Dynamics calculation of the Gibbs free energy of an oxide solution

 
 Initialization procedure and sensitivity analysis are presented elsewhere[1,3,6-8]. The first

stage included construction of MD models of pure MeO oxides in the NpT – ensemble. These
models consisted of 492 ions in a basic cube (246 ions of Me2+ and 246 ions of O2-). Coulomb
interaction was considered in the Evald-Hansen approximation[2]. The particle trajectories
were calculated using L.Verlet algorithm. It takes usually few thousand time-steps to reach
equilibrium. The amplitude of pressure fluctuations is about ± 0.5 GPa but the mean pressure
was rather small, less than 0.1 GPa. The mean molar volume of the system is calculated with
an error of 2-3%.

Thermodynamic calculations for binary oxide systems with a simple Born-Mayer po-
tential are described in works[1,2]. Similar calculation procedure is employed with the use of
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the potential (1). As an example, let us consider the MD simulation and calculation of ther-
modynamic properties for CaO-FeO oxides at 1873 K. Molecular dynamics models consisted
of 492 ions in the basic cube with periodical boundary conditions. MD simulation started with
simulation of the CaO-FeO system of a given composition. Then, some of Fe2+

 ions were
transformed into Ca2+

 ions changing interaction parameters of the potential (1), and the
equivalent amount of pure non-crystalline CaO was transformed into pure FeO. Such a proc-
ess reflects the replacement of solute FeO in a binary CaO-FeO system by CaO with reference
to pure non-crystalline oxides as standard states. It can be presented as a sum of two reactions:
(FeO) à FeO and CaO à (CaO).

The change ∆G in the Gibbs free energy of the binary solution as a result of transfor-
mation of 1 mole of dissolved FeO into 1 mole of CaO can be described by the expression:

∆G = ∆Gp + RT ln (γCaO/ γFeO)
or

∆Gs = ∆G - ∆Gp = RT ln (γCaO/ γFeO) (2)

where ∆Gp = G0
CaO-G0

FeO is the difference in molar Gibbs free energies of pure non-
crystalline CaO and FeO; γCaO and γFeO are activity coefficients of CaO and FeO in the CaO-
FeO solution.

In the MD simulation with potential (1), the transformation of dissolved FeO into CaO
is implemented by the change of interaction parameters using the following formulas:

Bij = Bij
0 + λ( Bij

f
 - Bij

0) and Cij = Cij
0 + λ(Cij

f
 - Cij

0) (3)

 where parameter λ is varied from 0 to 1. At λ = 0 parameters Bij and Cij describe inter-
actions of Fe2+ ions with other ions in the solution of a given composition, they are equal to
initial Bij

0
 and Cij

0 values. At λ = 1 parameters Bij and Cij describe interactions of Ca2+ ions,
they are equal to the final Bij

f  and Cij
f values. In the process of the variation of λ from 0 to 1

selected number of dissolved Fe2+ ions are transformed into Ca2+ ions.
The potential energy of the system can be presented as:

U = U0(r1, r2,.....rN) + λU1(r1, r2,.....rN), (4)

Here r1, r2,.....rN are ions coordinates, and λ is the varied parameter. Then, the change
in the Gibbs free energy of the system as a result of the isobaric-isothermal transfer of the
system from the state with a parameter λ1 to the state with a parameter λ2 is described by the
following expression[6,8]:

∆G = G(λ2) - G(λ1) = < >∫ dU/d d

  

  

1

2

λ λ
λ

λ

 = ∫ ><
2

1

d1U

λ

λ

λ (5)

For λ1 and λ2 not equal to zero, ∆G can be calculated by the equation:

∆G = G(λ2) - G(λ1) = ∫ ><
2

1

dln1ëU

λ

λ

λ (6)

where <λU1> is the mean value of the energy term due to ionic core repulsion plus di-
pole-dipole interaction, which can be calculated in molecular dynamics “experiment”. The
derivative dU/dλ for the pair potential (1) is equal to[3]:
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dU/dλ = (ij)U
) (ëB

BB
rep

ij

ijji
0f

∑ −
+ (ij)U

) (ëC

CC
dd

ij

ijji
0f

∑ −
(7)

Here Urep and Udd are mean values of energy terms due to ion cores repulsion and di-
pole-dipole interaction. The integration in (5) and (6) must be conducted along the isobaric-
isothermal path where the Bij and Cij values vary in a consistent way.

When only parameters Cij are changing, the Gibbs free energy increments are calcu-
lated by the formula:

∆G = G(C2) - G(C1) =  ∑ ∫
2C

1C

ijdC
) (ëijC

(ij)ddU
(8)

where Udd(ij) is the dipole-dipole interaction energy at the given Cij value.

4 The CaO - FeO system

MD simulation of the CaO-FeO system was considered in work[3]. The reasonable
agreement of calculated ratio of activity coefficients γCaO/γFeO with experimental data[9,10] at
1873 K was obtained using the following parameters of the Born-Mayer potentials (1): BCa-

Ca=BCa-Fe=BFe-Fe = 0; BCa-O = 3283 eV, BFe-O = 1900 eV, BO-O = 1500 eV, Rij = 29 pm for all ion
pairs, CCa-Fe

*
 = -43.3 eV⋅Å6, CCa-Ca=CFe-Fe=CCa-O=CFe-O=CO-O=0. Parameter C designated as C*

was used to adjust calculated excess Gibbs free energy to experimental values. These pa-
rameters were independent of the binary solution composition. They will also be assumed to
be constant for the ternary CaO-FeO-SiO2 system.

 The Gibbs free energy increment ∆Gp for the reaction of transformation of pure liquid
FeO into non-crystalline CaO at 1873 K and zero pressure, calculated using equation (6) was
found to be 283.6 kJ/mol. Previously the value  ∆Gp = 282.4 kJ/mol was obtained at 2000 K
for models with 216 ions[6]. The agreement with a present work is rather good.

It should be noted that the transformation of iron ions to calcium ions and other trans-
formations of ions were conducted at a constant ion mass (mass of the calcium cation was
assumed to be equal to the mass of the iron cation). This means that only configuration term
in ∆G is calculated. This fact has no effect on the calculated activity coefficients.

5 The MgO–SiO2 system
 
 Experimental data for the MgO–SiO2 system at 1873 K taken from work[11] are shown

in Table I. In this table, ∆Gf is the Gibbs free energy of formation of solution from pure liquid
FeO and SiO2. The system shows negative deviations from ideality.

 Parameters Bij and Rij of the potential (1) were taken from work[1,2,6]. They are as fol-
lows: BMg-Mg = BMg-Si = 0; BSi-Si = 2055.4 eV; BMg-O = 1441.4 eV, BSi-O = 1729.5 eV, BO-O =
1500 eV; and Rij = 29 pm for all ion pairs.

 Then the parameter CMg-Si was introduced. The Gibbs free energies of formation of
MgO-SiO2 binary solutions were calculated for three cases.

(1) The parameter CMg-Si was zero. In this case calculated values depart from experi-
mental data by 0.2-50% depending on composition.

(2) CMg-Si parameter was equal to CMg-Si
id. At these values of CMg-Si, solutions have

zero formation energy ∆Ef = 0, and
(3) Parameter CMg-Si was equal to CMg-Si

*, at which the ∆Gf values are equal to experi-
mental data at 1873 K.
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Parameters CMg-Si
id and CMg-Si

*
 are given in Table 1. Calculated CMg-Si

id values and
some adjusted CMg-Si

*
 parameters are positive, although in reality dipole-dipole interaction

energy has a negative sign. In this sense, the dipole-dipole interaction in the Born-Mayer inter-
ionic potential is the effective interaction, introduced to manipulate with calculated thermody-
namic properties of oxide solutions.

The CMg-Si
* parameter as a function of composition of MgO-SiO2 solutions can be pre-

sented as a linear function:

 CMg-Si
* = 152.9 – 247.3 (1 – XSiO2) (9)

 
 This provides a reasonable agreement with experimental data on the Gibbs free energies of
solution formation at 1873 K.

 Results of MD calculation of thermodynamic properties of magnesium silicates are
given in Table II. The term T∆Sex (∆Sex is the excess entropy of formation of the MgO-SiO2

solution) is very small relatively to ∆Ef, what means that a model of the MgO-SiO2 binary
system is close to regular solution.

Behavior of real molten MgO-SiO2 solutions deviates from the model of the regular
solution. This is indicated by the miscibility gap in the liquid state of the MgO-SiO2 system[9].
Regular solutions have a miscibility gap only when the enthalpy of their formation is positive.
The enthalpy of formation of MgO-SiO2 liquid solutions is negative, this means that at least in
the area of the miscibility gap, solutions have negative excess entropy.  Miscibility gaps can
be seen in phase diagrams of other MeO-SiO2 systems. It is quite possible that the excess en-
tropy of these solutions is due to structural changes in silica caused by the addition of a basic
MeO oxide. The excess entropy of MeO-SiO2 solutions is not expected to depend strongly on
the Me2+ size, or in other words, the excess entropy of different oxides will be approximately
the same at given concentration. This means that the ion transformation (like Fe2+ → Ca2+) in
the computer experiment does not affect the entropy of the solution. Moreover, the entropy
term in the excess Gibbs free energy is small relatively the enthalpy. This can be seen from
experimental data for crystalline silicates (data for liquid oxides are limited and scattered). For
example, standard formation enthalpy of 2FeO.SiO2 is equal to –29.4 kJ/mole and standard
formation entropy of this oxide is –4.83 J/mole.K[12] . Therefore, the entropy contribution to
the Gibbs free energy -T∆S, is equal to 1.44 kJ/mole what is less than 1/20 of the formation
enthalpy. The entropy of formation of iron orthosilicate is well below the value of 16.32
J.mol-1K-1 predicted by the regular solution model.

6 The FeO-SiO2 system

 At 1873 K, the FeO-SiO2 binary solutions are liquid in the range of XFeO ≥ 0.48. Ther-
modynamic properties of molten FeO-SiO2 alloys were measured in work[13]. The Gibbs free
energy of formation of the FeO-SiO2 solutions in from works[13,14] and calculated excess
Gibbs free energy of formation are given below:

 XFeO 0.9 0.8 0.667   0.5
 ∆Gf/RT -0.41 -0.50 -0.60 -0.49 (10)
 ∆Gex

f, kJ/mol -1.35 0 0.56 3.20

 In calculation of the excess Gibbs free energy, ∆Gf/RT for the FeO-SiO2 solutions was
assumed to be independent on temperature. Then, the excess Gibbs free energy was calculated
as ∆Gex = ∆G - RT (XFeOln XFeO+XSiO2 lnXSiO2). The FeO-SiO2 system is close to the ideal so-
lution.
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 Numbers of iron, silicon and oxygen ions in molecular dynamics models of ferrous
silicates are shown in Table III.

Calculations were conducted in the same way as for the MgO-SiO2 system. Bij pa-
rameters of potential (1) were taken from[1,2,6]: BFe-Fe = BFe-Si = 0, BSi-Si = 2055.4 eV, BFe-O =
1900 eV, BSi-O = 1729.5 eV, BO-O = 1500 eV. At the first stage, all Cij parameters were as-
sumed to be 0. Calculated internal energies of formation for the FeO-SiO2 solutions, ∆Ef are
shown in Table IV.

Then for each solution the parameter CFe-Si= CFe-Si
id was found, at which ∆Ef = 0 (Ta-

ble IV). This solution can be considered as an ideal solution. For such a solution ∆Gf
id = RT

(XFeO ln XFeO + XSiO2 ln XSiO2) and the excess Gibbs free energy is 0.
Finally, CFe-Si was changed from CFe-Si

id to C*Fe-Si, at which Gibbs free energy incre-
ment (the excess Gibbs free energy) calculated by equation (8) is equal to the experimental
value ∆Gex . An example of such calculation for the FeO-SiO2 solution with XFeO=0.9 is
shown in Table V.

Dipole-dipole interaction between iron and silicon ions (the fifth column of Table V)
as a function of CFe-Si parameter can be approximated by the following relationship (the last
column of Table V):

SiFe

dd

C

Si)(FeU

−

−
= 0.0351 – 1.718.10-5 CFe-Si

Thus, the excess Gibbs free energy of formation of the FeO-SiO2 oxide with XFeO=0.9
can be presented as:

∆Gf
ex = -1.35 = 2.1 C)dC1.718.10(0.0351

*C

262

5∫ −−

In this equation, ∆Gf
ex = -1.35 is the experimental value of ∆Gf

ex taken from (10), and
the coefficient 2.1 is the number of gram-ions in 1 mole of (FeO)0.9(SiO2)0.1 oxide. Solving
this equation we find that CFe-Si

* = 241 eV⋅Å6. This value is shown in Table IV. Other CFe-Si
*

values in Table IV were calculated in a similar way.
The following conclusions can be drawn from results of the MD calculation for FeO-

SiO2 solutions with XFeO ≥ 0.5 (Table IV):
1) solutions have strong negative deviations from ideality when CFe-Si = 0;
2) the excess Gibbs free energy of formation of FeO-SiO2 solutions is around zero

(the ideal solution) at CFeSi
id value in the interval of 239-275 eV⋅Å6;

3) CFe-Si
* values vary in the narrow range from 239 to 258 eV⋅Å6;

4) the excess entropy term T∆Sf
ex calculated from ∆Gf

ex = ∆Ef - T∆Sf
ex is very small

and can be neglected in comparison with the formation energy. This means that a
model with zero formation energy can be considered as an ideal solution. There-
fore, excess Gibbs free energy of simulated molten ferrous silicates can be calcu-
lated using only the formation energy of a system, and its excess formation entropy
may be neglected;

5) the CFe-Si
*
 parameter for ferrous silicates as a function of concentration may be ap-

proximated by the equation:

CFe-Si
* = 390.6 – 195.1 (1 – XSiO2) (11)

   7 The CaO-SiO2 system
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At 1873 K, the homogeneous liquid CaO-SiO2 solution stretches between 40 and 67
mol% SiO2. Thermodynamic properties of this system are discussed in[9-18]. The Gibbs free
energies of formation of molten mono- and disilicates measured in [15,16,19] are shown in Table
VI. This table also includes the ∆Gf data for the CaO⋅2SiO2, CaO⋅SiO2, 2CaO⋅SiO2 and
4CaO⋅SiO2 compounds assessed in work[18] from the phase diagram. The deviations from ide-
ality for this system are more negative than for magnesium silicates.

Like above, deviations from ideality will be accounted for by the effective dipole-
dipole interaction of Ca-Si ions.

Molecular dynamics models for the CaO-SiO2 system were initiated by converting
MgO-SiO2 models to the CaO-SiO models. The MgO-SiO2 models constructed with CMg-Si=0
were transformed into the CaO-SiO2 models changing the parameter BMe-O from 1441.4 to
3283.0 eV. As a result, the CaO-SiO2 models were obtained with CCa-Si = 0.

As an example, the change in properties of the system in the process of transformation
of 4MgO⋅SiO2 compound to 4CaO⋅SiO2 is shown in Table VII. It can be noticed that the en-
tropy terms TδSλ are very small in comparison with the energy increments δEλ. The repulsive
energy between Me2+ and O2-

 decreases and Gibbs free energy increment grows with increas-
ing BMe-O.

The molar Gibbs free energy of formation of mCaO⋅nSiO2 oxides was calculated as:

∆Gf (mCaO⋅nSiO2) = ∆Gf (mMgO⋅nSiO2) + {(2m + 3n) δGλ(mMeO⋅nSiO2)
– 2m δGλ(MeO)} / (m + n)

In this equation, δGλ(mMeO⋅nSiO2) is the Gibbs free energy increment for transfor-
mation of 1 g-ion mMgO⋅nSiO2 into 1 g-ion mCaO⋅nSiO2, and δGλ(MeO) is the Gibbs free
energy increment for transformation of 1 g-ion MgO into 1 g-ion CaO. The internal energy of
formation of calcium silicates was calculated in a similar way. The data obtained for the CaO-
SiO2 system at CCa-Si = 0 are given in Table VII. In fact, only calcium mono- and disilicate are
liquid at 1873 K. The 2CaO⋅SiO2  and 4CaO⋅SiO2 compounds at 1873 K are considered as
super-cooled liquids.

At the second step, the dipole-dipole Ca-Si interaction was included to obtain the
agreement between calculated and experimental Gibbs free energies of formation of molten
calcium silicates, using equation (8). Calculated CCa-Si

* parameters, at which calculated ∆Gf
ex

values are equal to experimental data, are given in Table VIII. It is seen that CCa-Si
*
 parameters

grow with silica concentration. The CCa-Si
*
 parameter as a function of the CaO-SiO2 composi-

tion can be presented by the relationship:

CCa-Si
* = 160.4 – 220.7 (1 – XSiO2) (12)

This expression is valid only for XSiO2 ≥ 0.5. As in magnesium silicates, the excess
entropy term in the excess Gibbs free energy of formation of calcium silicates is rather small
in comparison with the internal energy of formation. This result also implies that models of
molten calcium silicates can be considered in approximation of regular solutions, and, there-
fore, hypothetical athermal silicates must be close to ideal solutions.

8 The CaO-FeO-SiO2 ternary system

 In the molecular dynamics modelling of the ternary CaO-FeO-SiO2 system several iron
ions were transformed into the calcium ions. Such iron ions, which were subjected to trans-
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formation, are designated as Me2+ ions. Thus, in the initial state Me2+ ions are Fe2+ ions and in
the final state they are Ca2+ ions. For the ion pairs of the charge of the same sign the parame-
ters Bij can be assumed to be zero, because the ions in such pairs remote from each other to
distances, at which repulsion gives rather small contribution to the energy. This assumption
was adopted in this work for Ca-Ca, Fe-Fe, Ca-Fe, Ca-Si and Fe-Si pairs. BSi-Si and BO-O pa-
rameters were taken to be 2055.4 and 1500 eV correspondingly[1,2,6] although it does not have
a visible effect on the results of calculation. The Bij parameters for the unlike pairs were found
for pure oxides in works [1,2,6] as follows (eV): BCa-O= 3283.0, BFe-O = 1900.0, BSi-O = 1729.5.
Dipole-dipole interaction was considered only for cations in pairs Ca-Fe, Ca-Me, Fe-Me, Ca-
Si, Fe-Si and Me-Si. Cij parameters for all other pairs were assumed to be zero. In the process
of transformation of FeO to CaO only parameters BMe-O, CCa-Me, CFe-Me and CMe-Si were
changing. Therefore, equation (7) includes only contribution from the Me-O pairs into the first
sum in the RHS and contributions from Ca-Me, Fe-Me and Me-Si pairs into the second sum.

 It was shown above for binary FeO-SiO2, MgO-SiO2 and CaO-SiO2 silicates, that CMe-

Si parameters depend on the solution composition, while for the CaO-FeO system the CCa-Fe

parameter may be considered as a constant. Because of this, the Cij parameters in the ternary
CaO-FeO-SiO2 silicates were assumed to be independent of the CaO/FeO ratio and were cal-
culated from the data for the binary systems with the same silica concentration as in the ter-
nary solution.

 Compositions of CaO-FeO-SiO2 oxides subjected to the MD simulation and ions
numbers in the models are shown in Table IX. In the molecular dynamics experiments (NpT-
ensemble) ten Fe2+ ions were transformed into ten Ca2+ ions by changing the potential pa-
rameters BMe-O, CCa-Me, CFe-Me and CMe-Si. As a result of Fe2+ à Ca2+ transformation, the con-
centration of a ternary oxide slightly changed, and this was taken into account by averaging
concentrations between initial and final compositions.

 The calculations were conducted using equations (2), (3), (5) and (7), like for the bi-
nary systems[1,6]. Parameters BMe-O, CCa-Me, CFe-Me and CMe-Si changed linearly from their initial
values for the Fe2+-pairs to the values for the Ca2+- pairs. They are shown in Table X. The
derivatives dU/dλ were calculated along the isobaric-isothermal path from λ = 0.05 to λ =
0.95 and ∆G values were evaluated using Equation (5). Finally γCaO/γFeO ratios were calculated
using equation (2). They are given in Table XI.

 The experimental data on the CaO and FeO activity coefficients in the CaO-FeO-SiO2

system[9,20] were recalculated from the standard state pure solid CaO to pure liquid CaO as in
work[3]. Such data are shown in Table XI. Calculated γCaO/γFeO ratios in the ternary CaO-FeO-
SiO2 system are in a reasonable agreement with experimental data. The accuracy of calcula-
tion of the γCaO/γFeO ratio is 15-30%. This is estimated from the errors of 1-2 kJ/mol in the MD
calculation of the Gibbs free energy increments. The accuracy of experimental data for the
γCaO/γFeO ratio is 30-40%[19,20]. Therefore, it can be concluded that calculated γCaO/γFeO ratios in
the ternary CaO-FeO-SiO2 system are in a reasonable agreement with experimental data.

 The excess entropy term in the Gibbs free energy increment calculated by (2) is rela-
tively small what implies that models of the ternary CaO-FeO-SiO2 system is close to regular
solutions. In the approximation of a regular solution activity coefficient γi of a component i
can be calculated by the formula

 ln γi = /RTiHÄ , (13)

 
 where iHÄ is a relative partial molar enthalpy. To find the relative partial enthalpy of a com-

ponent i, the integral internal energy of formation of the CaO-FeO-SiO2 ternary system, cal-
culated by the MD method, was approximated by the following expression:
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 ∆Ef = a1X1X2(1-X3) + a2 X1X2
2

 (1-X3) + a3X1X3(1-X2) + a4 X1X3
2

 (1-X2) +
 + a5X2X3(1-X1) + a6 X2X3

2
 (1-X1) + a7X1X2X3 (14)

 

 Coefficients ai were found by the least square method using ∆Ef data for 9 boundary
binary oxides and 10 compositions of the CaO-FeO-SiO2 ternary system (5 initial composi-
tions are shown in Table IX and another 5 compositions were obtained by transforming ten
Fe-ions into Ca-ions). At 1873 K these coefficients are (kJ/mol): a1 = 84.882, a2 = -189.468,
a3 = -289.211, a4 = 205.869, a5 = 3.0515, a6 = 46.123, a7 = -382.339. ∆Ef values calculated by
the MD method and using equation (14) are compared in Table XII. The agreement between
them is reasonable. The standard deviation in the correlation of ∆Ef values found by these two
methods for 19 binary and ternary solutions is equal to 2.61 kJ/mol, what is close to the error
of MD calculation.

 The partial relative enthalpy of a component i is equal to the derivative iHÄ =

d∆Ef/dni, where ni is the number of moles of the i-th component. Using equations (14) and
(13), relative partial enthalpy and activity coefficients of CaO were calculated for 7 binary and
5 ternary compositions of liquid solutions. Calculated and experimental values of ln γCaO for
the ternary system are shown in Table XII. In four models out of five (models 1-3 and 5), the
calculated activity coefficients of CaO are higher than the experimental ones. This consistent
discrepancy can be attributed to the use of the regular solutions approximation.

 
9 Conclusions

Results of molecular dynamics calculations of thermodynamic properties of oxide
solutions depend strongly on the ionic potentials. Introduction of effective dipole-dipole inter-
action between cations for binary CaO-FeO, MgO-SiO2, FeO-SiO2, CaO-SiO2 systems allows
to get thermodynamic properties of solutions close to experimental data. The use of Cij

parameters of the effective dipole-dipole interaction obtained from experimental data for
binary system in the MD modelling of the ternary CaO-FeO-SiO2 system gives reasonable
agreement between calculated and experimental γCaO/γFeO ratio.

Results of MD calculation show that models of the systems studied above are close to
regular solutions, and therefore, athermal systems are almost ideal solutions.

The MD method presented in this paper gives reasonable results on thermodynamic
properties of ternary oxide systems. It also provides data on structure of oxide solutions and
can be used for calculation of dynamic properties.
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Table I  Properties of MgO-SiO2 silicates
Silicate ∆Gf, kJ/mol

experiment [11]
∆Gf, kJ/mol
at CMg-Si = 0

CMg-Si
id,

eV. Å6

CMg-Si
*,

eV. Å6

4MgO⋅SiO2 -30.8 -22.9 105.9 -54.9
2MgO⋅SiO2 -36.8 -36.3 147.2 -2.8
MgO⋅SiO2 -30.1 -37.2 152.4 38.9
MgO⋅2SiO2 -18.4 -27.0 128.5 61.8

Table II. Calculated thermodynamic properties of MgO-SiO2 silicates.
Excess Gibbs free energy, internal energy and excess entropy of formation are calculated at
CMg-Si = C *

Mg-Si (experimental data are taken from work[11]). The volumes of solutions are
calculated at CMg-Si = C *Mg-Si and CMg-Si = Cid

Mg-Si when ∆Ef =0
V/N, cm3/g-ionSilicate

CMg-Si=
C idMg-Si

CMg-Si=
C *Mg-Si

∆Gf
ex , kJ/mol ∆Ef , kJ/mol T∆Sex , kJ/mol

4MgO⋅SiO2 9.27 9.13 -23.0 -20.0 3.0
2MgO⋅SiO2 8.96 8.40 -26.9 -22.8 4.1
MgO⋅SiO2 9.76 9.40 -19.3 -20.2 -0.9
MgO⋅2SiO2 9.91 9.49 -8.5 -11.7 -3.2

 
 Table III  Number of ions in FeO-SiO2 models

 Number of ions Mole fraction of
FeO  Fe  Si  O  Total
 0.9  207  23  253  483
 0.8  180  45  270  495
 0.667  142  71  284  497
 0.5  100  100  300  500
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Table IV Simulation of FeO-SiO2 solutions at 1873 K and zero pressure (data on L, V/N, E and ∆Ef are calculated at CFe-Si = 0; Eid is the internal
energy of the ideal solution calculated at CFe-Si =CFe-Si

id when Gf
ex=0)

XFeO L, nm V/N,
cm3/g-ion

E,
kJ/g-ion

Eid,
kJ/g-ion

∆ Ef,
kJ/g-ion

CFe-Si
id,

eV⋅Å6
CFe-Si

*,
EV⋅Å6

∆ Ef 
*,

kJ/g-ion
(∆Gf

*)ex,
kJ/g-ion

(T∆Sex
*)ex,

kJ/g-ion
1.0 1.8960 8.34 -1830.30 -1830.30 - - - - - -
0.9 1.9059 8.42 -2168.28 -2159.70 -18.0 262 241 -1.39 -1.35 -0.04
0.8 1.9060 8.94 -2473.54 -2459.16 -31.6 239 239 0.00 0.00 0.00
0.667 1.9468 9.10 -2835.03 -2818.50 -38.6 248 252 0.58 0.56 0.02
0.5 1.9620 9.28 -3230.80 -3213.78 -42.5 275 258 -2.73 -2.58 -0.15
0.0 1.9549 9.03 -4136.11 -4136.11 - - - - - -



Table V Simulation of the FeO-SiO2 solution with XFeO=0.9 with different CFe-Si parameters at
1873 K (L  is the length of the basic cube edge)
CFe-Si, eV⋅Å6 L, nm p, MPa E,

kJ/g-ion
U dd (Fe-Si),
kJ/g-ion

SiFe

dd

C

Si)(FeU

−

−

0 1.9059 88.6 -2168.28 - -
100 1.9209 -11.6 -2164.74 3.30 0.0335
200 1.9299 -6.9 -2161.58 6.33 0.0316
300 1.9356 20.2 -2158.43 8.98 0.0299

Table VI. Experimental data on the Gibbs free energy of formation of calcium silicates
∆Gf, kJ/molOxide
[15] [16,19] [18]

4CaO⋅SiO2 - - -42.8
2CaO⋅SiO2 - - -65.8
CaO⋅SiO2 -58.4 -41.7 -58.9
CaO⋅2SiO2 -42.1 -30.0 -41.1
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Table VII Computer transformation of the 4MgO⋅SiO2 model into the 4CaO⋅SiO2 model at
1873 K (C Me-Si = 0)
CMe-O,
eV

L, nm p, MPa -Etotal,
kJ/g-ion

UMe-O,
kJ/g-ion

δEλ,
kJ/g-ion

δGλ,
kJ/g-ion

TδSλ,
kJ/g-ion

1441.4 1.9189 -75.3 2528.2 608.6 0 0 0
1809.72 1.9716 -57.3 2477.9 545.2 50.3 47.8 2.5
2178.04 1.9974 -28.3 2441.5 509.0 86.6 83.3 3.3
2546.36 2.0165 -30.7 2414.1 481.4 114.0 111.3 2.7
2914.68 2.0316 -29.3 2389.7 457.1 138.5 134.5 4.0
3283.0 2.0489 -99.6 2370.0 443.0 158.1 154.0 4.1

Table VIII  Calculated thermodynamic properties of CaO-SiO2 oxides at 1873 K
Oxide ∆Gex

f,
kJ/mol
at  CCa-Si = 0

∆Ef,
kJ/mol
at  CCa-Si = 0

CCa-Si
*,

eV⋅Å6
∆Ef, kJ/mol
at CCa-Si=
CCa-Si

*

T∆Sex, kJ/mol
at CCa-Si =
CCa-Si

*

4CaO⋅SiO2 -43.4 -29.1 ∼0 -29.5 5.5
2CaO⋅SiO2 -63.5 -53.4 -18.2 -55.7 0.2
CaO⋅SiO2 -67.6 -53.0 67.8 -45.0 2.6
CaO⋅2SiO2 -52.1 -46.7 84.5 -32.8 -0.6

Table IX  MD Models of ternary CaO-FeO-SiO2 system at 1873 K
Number of ions Initial concentration,

molar fraction
Model

Ca2+ Fe2+ Me2+ Si4+ O2- Total CaO FeO SiO2

1 66 43 10 81 281 481 0.330 0.265 0.405
2 30 112 10 48 248 448 0.150 0.610 0.240
3 74 73 10 43 243 443 0.370 0.415 0.215
4 23 142 10 25 225 425 0.115 0.760 0.125
5 41 133 10 16 216 416 0.205 0.715 0.080
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Table X Parameters BMe-O(eV), CCa-Me, CFe-Me, and CMe-Si (eV⋅Å6) for different λ values for the
model #2 (Table IX) of the CaO-FeO-SiO2 system
λ BMe-O CCa-Me CFe-Me CMe-Si

0 1900.00 -43.3 0 242.3
0.2 2176.60 -34.64 -8.66 192.4
0.4 2453.20 -25.98 -17.32 142.5
0.6 2729.80 -17.32 -25.98 92.5
0.8 3006.40 -8.66 -34.64 42.6
1.0 3283.00 0 -43.3 -7.3

Table XI  Activity coefficients γCaO/γFeO ratio in the ternary CaO-FeO-SiO2 solutions
γCaO/γFeOModel
Calculated Experiment [9,20]

1 0.0036 0.0020
2 0.0111 0.0090
3 0.0467 0.0261
4 0.0160 0.0245
5 0.0640 0.0770
 

Table XII Activity coefficients γCaO (the standard state is the super-cooled liquid CaO) in the
CaO-FeO-SiO2 system

∆Ef, kJ/molModel XCaO XFeO XSiO2

MD
Calcula-
tion

Formula
(14)

lnγCaO

Calculated
using (14)

lnγCaO

Experiment
[9,20]

1 0.330 0.265 0.405 -32.0 -30.4 -4.33 -5.63
2 0.150 0.610 0.240 -10.3 -12.1 -4.74 -4.85
3 0.370 0.415 0.215 -25.8 -22.5 -1.89 -2.99
4 0.115 0.760 0.125 -7.2 -8.9 -4.13 -4.10
5 0.205 0.715 0.080 -15.1 -12.3 -1.97 -2.42


