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INTRODUCTION

Crystalline non-metallic inclusions in liquid steel show a variety of forms. Spherical, faceted,
plate-like, dendritic and cluster-like inclusions have been reported by several authors [1,2]. The
form of the inclusions is determined by their structure, growth conditions and presence of
impurities. Spherical and dendritic inclusions are typical for growth far from equilibrium at high
supersaturation. In case the crystal growths at almost equilibrium conditions, its bulk crystal
structure becomes more important and facets appear on the surface due to the anisotropy of the
crystalline phase.

In the present paper, the theoretical growth form of spinel (MgAl2O4) is derived for the ideal
crystal structure of normal spinel by means of the Hartman-Perdok theory. After the search for F
faces, the attachment energies and specific surface energies are calculated in an electrostatic point
charge model. These energies are corrected for Born repulsion and van der Waals attraction. In
addition, the partial covalency of the strong is taken into account bonds by adjusting the effective
point charges. We are able to describe the most favourable surface topology at atomic scale for
the interfaces during the growth. Further the model is used to derive the growth form and
equilibrium form of corundum. Finally the computed theoretical forms are discussed in relation
to the morphologies of inclusions observed in steel.

Spinels can be present as non-metallic inclusions in steel [3]. Hercynite (FeAl2O4) and galaxite
(MnAl2O4) have been observed in semi-killed steels and are possibly the precursors of aluminium
oxide. Spinel (MgAl2O4) can even be present in completely killed steel. Magnesiochromite
(MgCr2O4) refractory bricks are used in steel industry as furnace lining, because they are very
resistant to corrosion by slag [3,4]. The γ-Al2O3 phase, which has been observed in steel [5],
crystallises in a spinel defect structure.

Corundum (α-Al2O3) is energetically the most stable aluminium oxide structure. Cluster-type
inclusions have been determined to be corundum [6]. This work shows that single faceted
corundum particles in steel can be recognised as well.

THE HARTMAN-PERDOK THEORY

The Hartman-Perdok Theory (HPT) describes the relation between internal crystal structure and
crystal morphology [7-9]. Moreover, it derives at the same time the surface topology of the
crystalline interface during the growth at atomic scale.
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1. Periodic Bond Chains

The PBC is an uninterrupted periodic chain of strong bonds between the crystallising units, such
as ions, molecules, atoms or clusters thereof, formed during crystallisation. A PBC must be
stoichiometric. At the same time, it should not have a dipole moment perpendicular to its
direction [uvw]. Only a limited number of PBCs can be distinguished in a crystal structure,
assuming that strong bonds are confined to the first co-ordination sphere. In a projection of the
three-dimensional crystal structure parallel to the vector translation of the PBCs (figure 1a) they
are seen end-on as open circles. The detachment of growth units parallel to the PBCs is easier for
C than for A, when additional strong bonds are present between A and B. These latter bonds form
another PBC parallel to the crystal surface. Hence the growth of such a flat or F face proceeds via
a layer mechanism if two or more PBCs are parallel to its surface. In figure 1b strong bonds
between A and B are absent, which results in a stepped or S face as the probability of detachment
for A and C are equal.

2. Crystal faces

Crystal faces can be classified either as F faces, which contain at least two PBCs in a slice of
thickness hkld , or as S faces containing only one PBC, or as K faces containing no PBC at all

(figure 2). The F faces are the slowest to grow according to a layer mechanism and are therefore
the only important ones for the crystal morphology. K faces grow quickly without nucleation. S
faces are intermediate between F and K faces. Although they need a one-dimensional nucleation
in case of low kink densities, in practice there are always sufficient kinks present. Just as K faces,
they grow so fast that they should not be present on growth forms.

PBCs, F, S and K faces are structurally defined and cannot be determined experimentally. It is,
however, possible to observe growth spirals or two-dimensionally nucleated layer growth
indirectly ex-situ or directly in-situ by STM or AFM. Both phenomena are indications for an F
character of that particular face.

For the quantification of the morphological importance, Hartman defines the attachment energy,
the energy related to the surface of the elementary growth layer. The surface structure of a
growing crystal is determined by its specific surface energy that must be as low as possible. The
distances between two identical surfaces are equal to the interplanar spacing. When the unit cell
is cantered and/or screw axes or glide planes are present perpendicular to that face (hkl), the
repeat distance of the minimum in specific energy may be submultiples of hkld : nhnknld . The

extinction rules of X-ray crystallography will thus also be valid for the thickness of the
elementary growth layer just as in case of the Bravais-Friedel-Donnay-Harker law. Hence the
Hartman-Perdok theory considers the slice with a thickness of hkld  as the elementary growth

layer.

The identification of PBCs and subsequent classification of crystal faces as F, S and K faces can
be of great value in understanding the crystal morphology. The slice with an F character defines,
however, not only the elementary growth layer in case of layer growth, but also the topology of
the crystalline interface during the crystal growth processes on atomic scale. Hence the influence
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of the crystal structure on the surface configuration of the crystalline interface can be derived
with atomic precision by the Hartman-Perdok method.

QUANTITATIVE APPROACH

1. Attachment energy

The attachment energy, Eat, is the energy released per mole, when a new slice of thickness dhkl

crystallises on an already existing crystal face (hkl). The attachment energy is, in fact, the sum of
all the interaction energies between all the ions belonging to one crystallising unit and all the
slices dhkl into which the crystal has been divided parallel to the crystal face (hkl), see also figure
3. The slice energy, Esl, is the energy released per mole, when a new slice dhkl is formed from the
vapour neglecting the influence of edge energies. The crystal energy, Ec, is the energy released
per mole, when the crystal crystallises from the vapour. The following relation holds between the
crystal energy, the attachment energy and the slice energy:

Ecr = Esl + Eat. (1)

2. Specific surface energy

The specific surface energy, hklγ , of a crystal face (hkl) is the energy per unit area of surface
needed to split an infinite crystal in two halves along the boundary of two adjoining slices having
a thickness dhkl. The energy to split a crystal parallel to a face (hkl) along the slice boundary
equals:

i
i

iE∑ (2)

The summation over i times Ei is due to splitting of the crystal in two halves parallel to the slice
boundary of (hkl), e.g., the boundary between the slices with number m= 0 and 1 in figure 4. The
interaction energies of slice 0 with slices 1, 2, 3, etc. equals E1, E2, E3, etc. In case of slice 2 these
energies are E2, E3, etc., respectively. For the calculation of the specific surface energy the
number of molecules within a slice per unit area of the surface must be known. Hence the
specific surface energy can be calculated from the following expression
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=
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where f (=166.036) is a conversion factor in order to  obtain the surface energy in mJm-2 instead
of kJ/mole, Zp the number of molecules in the primitive unit cell with volume Vp and Em the
partial attachment energy of slice m.
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3. The electrostatic point-charge model

In order to quantify the relative morphological importance of F faces obtained from the Hartman-
Perdok analysis, attachment energies have been computed with the Fortran program ENERGY.
Beside the attachment energies also slice energies and specific surface energies are calculated in
an electrostatic point charge model.

The potential, VP, at the point P(R,Z) induced by an infinite row r of 2N equally spaced point-
charges qe with spacing p can be calculated [7-12] as shown below. There are three different
cases:
1. The point P is situated in a general position, where R ≠ 0 and Z ≠ 0 (figure 5a)

(1)

1

2
( , ) 2 2 cos 2 ln limP o N

l

qe ilR lZ p
V R Z iH N

p p p R
π π π

∞

→∞
=

      = + +      
     

∑ (4)

where the expression (1) ( )oiH iy represents the real part of the Hankel function of the zero order

with an imaginary argument, of which the value decreases rapidly as the argument y increases
[13].

2. The point P is situated on the row of point-charges, anywhere in between two point-charges,
where R = 0 and Z ≠ 0 (figure 5b)

(0, ) 1 2 lim lnP N

qe Z Z p p qe
V Z N

p p p Z p Z p →∞

       = − Ψ + Ψ − − − +        −       
 (5)

where 
ln !

( )
d x

x
dx

ψ =

3. The point P is situated just at a site of a point-charge, R=Z=0 (figure 5c)

[ ](0,0) 2 lnP N

qe
V C N

p →∞= + (6)

where: C= - ψ (0) = 0.57721566490 (Euler's constant).

The actual version of the computer program (ENERGY99) computes now also the contributions
of the Born repulsion energy and the attractive van der Waals energy to the surface and
attachment energies. The point charges used in the models for spinel and corundum were taken
from Matsui [14], who computed the ion net charges and coefficients for the short-range
interactions from molecular dynamics simulations. These point charges and short-range
interaction coefficients are listed in table 1. He approximates the potential energy by the sum of
pair wise interactions, as in the following expression:

[ ])/()(exp)()( 61
jiijjijiijjiijjiij BBrAABBfrCCrqqrV +−+++−= −− (7)
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where the terms represent Coulomb, dispersion and Born repulsion interactions, respectively.
Here rij is the interatomic distance between atoms i and j, f  is a standard force of 4.184 kJ Å-1

mol-1, and q i, Ai, Bi and Ci are the net charges, repulsive radii, softness parameters and van der
Waals coefficients of the ion i, respectively. In his interatomic potential model the net charges are
constrained by q(Mg) = 3

2 q(Al) = -q(O), in order to apply the potential to melts and crystals with
any composition in the system CaO-MgO-Al2O3-SiO2 (CMAS).

4. Theoretical growth form and equilibrium form

Hartman and Bennema [15] found that the relative growth rate of a face is directly related to
attachment energy. Hence the theoretical growth shape of spinel can be constructed by means of
a so-called Wulff plot construction. The distance from a central point to the face (hkl) is plotted
directly proportional to the absolute value of the attachment energy of that face. The innermost
closed surface of this three-dimensional plot represents the theoretical growth form. This
theoretical growth form includes only the contributions to the relative growth rates from the ideal
crystal structure. Other contributions, such as reconstruction or relaxation of the interface, the
influence of supersaturation and the presence of impurities are not taken into account.

The theoretical equilibrium form is also constructed by means of the Wulff construction. Instead
of the attachment energies, the specific surface energies are plotted.

APPLICATION TO SPINEL

1. The spinel structure

The spinel group compounds, which have the general chemical composition of AB2O4, where A
= Mg2+, Fe2+, Mn2+, Zn2+, etc., and B = Al3+, Cr3+, Fe3+, etc. Spinel compounds crystallise in the
cubic space group Fd3m  (227) with 8 tetrahedral a sites and 16 octahedral d sites. The oxygens
are located on the 32 e sites arranged in cubic-closed-packing layers. The cubic-closed-packing
layers of anions alternate with cation layers. The unit cell contains eight molecules of AB2O4. In
the so-called normal spinel structure, all the divalent cations are located on the tetrahedral a sites,
while all trivalent cations are exclusively on the octahedral d sites. In the inverse-spinel structure,
half of the trivalent ions are on the tetrahedral a sites and the divalent cations occupy together
with the other remaining half of the trivalent ion the octahedral d sites.

The spinel structure accommodates a large variety of cations [16,17]. The locations of the
tetrahedral and octahedral sites are always the same and do not depend on the nature of the
constituent cations. However, the general position of the anions, (u,u,u), is depending on the
relative size of the A and B cations. For the mineral spinel (MgAl2O4) used as model for the
normal spinel compounds in the present paper u = 0.361 [18], which is close to the ideal close
packing u = 0.375. The crystal structure data, fractional co-ordinates of the cations and anions
[18] as used in the present paper are listed in table 2.
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According to the Law of Bravais-Friedel-Donnay-Harker the larger the interplanar distance dhkl,
the more important face (hkl) is for the crystal morphology provided that the space group
symmetry and the presence of symmetry operators such as glide planes and screw axes have been
taken into account. For spinel the morphological importance should accordingly be: {111},
{220}, {113}, {400} and {331}. Hence, the most important crystal form of spinel is the
octahedron {111} followed by the rhombic dodecahedron {110}.

2. F faces in spinel

The search for proto-PBCs (pPBCs) can precede the search for complete PBCs. These pPBCs are
defined by a series of strong bonds providing the vector translation [uvw] parallel to the
periodicity of the PBC [19]. They are the backbones of the genuine PBCs, but they are most of
the times neither stoichiometric nor non-polar. Due to the F centring of the cubic unit cell the
shortest translations is 〈½ ½ 0〉. Parallel to 〈½ ½ 0〉 the following pPBC can be traced consisting
of four strong bonds: Mg - O - Al - O - Mg. The latter Mg is identical to the first Mg by a
translation of 〈½ ½ 0〉. In a projection of along [1 1 0] (figure 6) the shaded areas within the slice
boundaries represent the [½ ½ 0] pPBC.

Five F faces that are all parallel to [½ ½ 0] can be defined (figure 6). Within their corresponding
slice boundaries, complete stoichiometric and non-polar PBCs can be defined. These F faces are
in order of decreasing dhkl: 111

d  (4.662 Å), 
202

d  (2.855 Å), 
131

d  (2.435 Å), 004d  (2.019 Å) and

313
d  (1.853 Å). Besides these five F faces no other F faces can be defined for spinel.

Each of the F faces 
111

d , 
202

d  and 004d  has two different F slices, called thkld −  and ohkld − , which

respectively refers to the presence of complete [MgO4] tetrahedra or complete [AlO6] octahedra
within the slice boundaries. In dotted lines an [AlO6] octahedron and a [MgO4] tetrahedron are
denoted in slice 

o
d

111
 and slice 

t
d

111
, respectively (figure 6). Until the surface related energies

are calculated, we do not decide which one of these two configurations might exist during the
growth of spinel. Once these energies are known, the energetically most favourable surface
topography may be selected.

3 Surface configurations

When ions are located exactly on the slice boundaries, they must be divided over two slices. This
can often be realised in more than one way. In the so-called disordered boundary condition the
ions are at random distributed over the two slices, i.e., each ion site is occupied for 50 %. This
means that the occupancy of that particular site is 0.5, either in time or as the statistical average
occupation of all sites on the surface. For the ordered configuration half of the sites is fully
occupied (solid circles in figure 7) and the other half consists of vacancies (open circles in figure
7). Hence different surface configurations can be defined as function of the selected surface
topology.

3.1 The {111} surface configurations
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Aluminium atoms are located on the boundaries of both types 
111

d  slices, but the number of

aluminium atoms on the slice 
t

d
111

 boundary is three times that of slice 
o

d
111

. For {111}o only

one ordered topology exists, but for {111}t there are two possibilities (figure 7), respectively
denoted as {111}t-c (left) and {111}t-d (right).

3.2 The {220}o and {220}t surface configurations

Ordering of the surface configuration in both {220}o and {220}t affects only the aluminium sites.
In {220}o the magnesium and oxygen atoms located at the surface are part of both the [½ ½ 0]
PBC and the [001] PBC. Therefore the only ordered surface configuration of {220}o consists of
arrays of alternating occupied and unoccupied aluminium sites. The aluminium sites at the
surface of {220}t are part of the [½ ½ 0] PBC and of the [001] PBC. Only one surface
configuration is possible, which consists of arrays of fully occupied and unoccupied aluminium
sites.

3.3 The {113} and {331} surface configurations

The slice content of the F face {331} can be defined within straight slice boundaries ( 331d ) or by

assuming complete tetrahedra ( td 331 , not shown). In the latter case the slice boundaries are not

straight and pass between two edges of neighbouring tetrahedra. In both cases the aluminium
sites at the boundaries are part of the [½ ½ 0] PBC. Therefore these aluminium sites cannot be
halved and the ordered configuration is formed by alternating arrays of occupied and unoccupied
sites along [½ ½ 0].

Like the slice td 331  the slice 113d  contains complete tetrahedra, but since the aluminium sites at

its boundaries sites are not part of the [½ ½ 0] PBC these sites can be halved or be ordered. Two
ordered configurations are possible, first in arrays with alternating occupied and unoccupied sites
along [½ ½ 0] and secondly alternating arrays of occupied and unoccupied sites along [½ ½ 0],
respectively denoted in table 3 with {113}c and {113}d.

4.5 The {400} surface configurations

Since all atom sites in the slice td 400  are part of the pPBCs [½ ½ 0] and [100] only one surface

configuration is permitted. The surface contains two oxygen atoms and one aluminium atom per
molecule of spinel. Except the magnesium atoms, all other atoms are located on the slice
boundaries.

Another slice, 400d , with magnesium ions on the boundaries, can be constructed. The magnesium

ions are distributed in an ordered manner. Magnesium ions and vacancies alternate with each
other with a periodicity of 〈110〉.
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4. Results

The net charges, repulsive radii, softness parameters and van der Waals coefficients as given by
Matsui [13] and listed in table 1 have been used in order to compute the attachment energies,
surface energies and crystal energies. Table 3 lists the attachment energies (Etot) and specific
surface energies (γhkl) of disordered and ordered surface configurations. The attachment energy
has been divided in Coulomb interactions (EC) Born repulsion (EB) and van der Waals
interactions (ED). These energies are listed in order of decreasing dhkl. The total crystallisation
energy is equal to –4602 kJ⋅mol-1, of which –4733 kJ⋅mol-1 is due to the Coulomb interactions
and +131 kJ⋅mol-1 due to the short-range interactions.

The dispersion energy and the Born repulsion energy in the spinel structure are respectively -529
and 660 kJ.mol-1, which results in a net effect of less than three percent of the crystallisation
energy. The Born repulsion decreases rapidly with increasing r, being the distance between the
corresponding ions, in contrast to the dispersion energy contributions. Above the cut off value of
0.1 nm the contributions of Born energy and those of the dispersion energies are not significant
for our calculations.

When we compare the disordered and ordered surface configurations, we observe that the ordered
surfaces have always a lesser negative attachment energies than those with a disordered surface.
In case of multiple slice configurations, the configurations with complete [MgO4] tetrahedra have
lower negative attachment energies. This is especially significant for {111} and {220}, where the
alternative slice configurations, {111}o and {220}o, contain complete [AlO6] octahedra. Hence
ordering of the cations on the boundaries or the incorporation of complete Al octahedra instead of
Mg tetrahedra results into lesser negative and thus more stable surfaces.

The theoretical growth form shows an octahedron {111} and the equilibrium form shows a
rhombic dodecahedron. The importance of the octahedral face is caused by the strong influence
of the cubic-closed packing of oxygen atoms parallel to {111}. Based on our computations, we
suggest that the surface structure of the octahedral face consists of an oxygen layer with
magnesium and aluminium atoms as interstitials between oxygen atoms. Other forms than (111}
present on spinel must be due to external conditions during the growth such as supersaturation
and the presence of impurities.

APPLICATION TO CORUNDUM

Corundum was one of the first structures analysed by Hartman in 1962 [20]. In 1980 the PBC
analysis was reviewed and slightly adjusted. Eight F faces were recognised, which are in
decreasing order of dhkl: (111), (100), (011), (121), ( 101 ), (021), (222) and (200). The
attachment energies of a model with complete ionic charges were computed by the use of an
earlier version of the computer program ENERGY and the growth form was found to be
rhombohedral (left crystal in figure 9) [21]. The deviation from the more platy {111} habit was
explained as a habit modification caused by specific adsorption of the flux material on {111}.
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In the present paper we use the point charges given by Matsui and include the short-range
interactions [13]. Only the most important F faces have been computed (table 4). In order of
decreasing attachment energy the following F slices have been computed: (100), (011), (111),
( 101 ), (121) and (021).

The effects of the short-range interactions on the attachment energies differ largely. There is only
a minor correction of 0.7 kJ⋅mole-1 in case of (011), while in case of (100) the correction is 209
kJ⋅mole-1. These short-range interactions have a strong impact on the Coulomb interactions,
which are much lower for the model based on the Matsui net charges than for the previous
completely ionic model. The theoretical growth form is significantly changed (middle crystal in
figure 9). The previous rhombohedral habit {101} is changed into a habit that is more flattened
parallel to {111} with {100} as the major rhombohedron and {101} as the minor rhombohedron.
The more equidimensional theoretical equilibrium form shows again {101} as major
rhombohedron and additional smaller forms such as {111}, {121}, {100} and { 101 } (right
crystal in figure 9).

OBSERVED CRYSTAL FORMS

Spinel-type crystals such as, spinel, galaxite, hercynite and impure magnesiumchromite, observed
in steel are usually octahedral (figure 10a). Sometimes cube-octahedral forms of galaxite-
hercynite inclusions (figure 10b) and magnesium containing aluminium oxide inclusions have
been observed as well. The rhombic dodecahedron equilibrium form has not been observed.

Aluminium oxide crystals have been observed that are almost similar to the computed growth
form of corundum (figure 10c). The small deviation from the theoretical form, an increased
morphological importance of {111}, might be due to the relatively fast growth process. This
hypothesis is supported by the presence of a concave hopper-like {111}. The theoretical
equilibrium form of corundum is less frequently observed (figure 10d) due to the fact that growth
at equilibrium is hardly achieved.
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Figure 1: Three-dimensional crystal structure has been projected parallel to the
direction of the PBC. PBCs are seen end-on as open circles a) F or Flat faces grow
according to a layer mechanism, if they are parallel to at least two non-collinear
PBCs b) Stepped or S faces are parallel to only one set of PBCs. Taken from [7].

Figure 2: Classification of F-, S- and K-faces. Taken from [7].
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Figure 3: One crystallising unit is attached on an already existing crystal face (hkl) of a half
crystal divided into m slices each dhkl thick. Each crystallising unit contains a PBC (m,n), where m
represents the slice number, and n the chain number. Taken from [9].

Figure 4: The energy needed to split the crystal along the slice boundary
between the slices with slice number m= 0 and 1 amounts to i

i

iE∑ .

Taken from [9].
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Figure 5: Position of point P(R,Z) with respect to row of ions parallel to [U1V1W1] having a
period p. The projection plane ( 1 1 1U V W )* perpendicular to [U1V1W1] is chosen through P(R,Z)

a) P in general position: R ≠  0, Z ≠ 0
b) P on the row of ions: R = 0, Z ≠ 0
c) P on an ion site: R = Z = 0.

Taken from [9].
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Figure 6: Projection of the spinel structure along [½ ½ 0]. The grey areas, open circles, black
circles and grey circles represent 〈½ ½ 0〉 pPBCs, oxygen atoms, aluminium atoms and
magnesium atoms, respectively.
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Figure 7: Two ordered surface configurations of {111}t. Only the aluminium sites are shown.
Solid circles and open circles respectively represent occupied aluminium sites and aluminium
vacancies (left, {111}t-c and right, {111}t-d).
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Figure 8: The theoretical growth form (left) and the theoretical equilibrium form (right) computed
for spinel by using the data of Matsui [14]. The short-range contributions are included in the
computation of the growth form.

Figure 9: Theoretical corundum crystal forms. At the left the growth form as computed by
reference [21] taking into account only the Coulomb long-range interactions. The growth form
(middle) and equilibrium form (right) computed by using the data of Matsui [14]. The short-
range contributions are included in the computation of the growth form.
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Figure 10: (a) Cluster of octahedral spinel crystals. (b) Hercynite-galaxite inclusions. (c) Growth
form of corundum. (d) Equilibrium form of corundum.
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Table 1: The net charges (q), repulsive radii (A), softness parameters (B) and van der Waals
coefficients (C) are taken from Matsui [14].

Atom q [|e|] A [Å] B [Å] C [Å3(kJ/mol)1/2 ]
O  0.945 0.8940 0.040 29.05
Al 1.4175 0.7852 0.034 36.82
Mg -0.945 1.8215 0.138 90.61

Table 2: Crystal structure data of spinel (MgAl2O4) [17]. Unit cell data: Space group Fd3m (227),
origin at ( 43m ); ao = 8.075 Å.

Atom Wyckoff
notation

point
symmetry

x y z

O 32(e) 3m 0.361 0.361 0.361
Al 16(d) 3m 5/8 5/8 5/8
Mg 8(a) 43m 0 0 0
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Table 3. Computed energies (in kJ.mol-1) for spinel with disordered (D) and ordered (O) surface
configurations (γhkl in mJ.m-2). The attachment energies (Eat) and slice energies (Esl) are divided
in Coulomb (EC), dispersion (ED) and Born repulsion (EB) energies. The subscript is explained in
the text.

Slice dhkl Eat γhkl

ED EB EC Etot

 {111}o D  -200   253   -346  -288   509
 {111}o O  -200   253   -265  -209   762
 {111}t D  -124    79  -1163 -1196  1711
 {111}t-c O  -124    79   -745  -783  4380
 {111}t-d O  -124    79   -744  -783  4376
 {220}o D  -273   311   -985  -947  1720
 {220}o O  -273   332   -651  -605   870
 {220}t O  -209*   151*  -1374* -1193   ND
 {113} D  -261   210  -1267 -1567  3981
 {113}c O  -261   210  -1272 -1323  3921
 {113}d O  -261   210  -1191 -1230  3731
 {400} O  -363*   439*   -661*  -584  1683
 {400}t O  -310*   264*   -832*  -878   ND
 {331}t O  -318   269  -1309 -1358  4054
 {331} O  -347   383  -1416 -1349  2979

*Calculated by Eat = Ecr – Esl. ND, not determined.
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Table 4. Computed energies (in kJ.mol-1) for corundum. All faces concern ordered (O) surface
configurations (γhkl in mJ.m-2). The attachment energies (Eat) and slice energies (Esl) are divided
in Coulomb (EC), dispersion (ED) and Born repulsion (EB) energies.

Slice dhkl Eat γhkl

ED EB EC Etot

(111) O -155 170 -329 -313 2787
(100) O -239 448 -366 -157 2802
(011) O -189 190 -263 -262 1785
(121) O -161 225 -540 -476 2505
( 101 ) O -308 409 -487 -387 2316
(021) O -306 388 -727 -654 2703


