Phase diagram for the CaO-SiO₂-FeO_x system at low oxygen partial pressure Fumitaka Tsukihashi¹⁾ and Hisao Kimura²⁾ - 1) Professor, The University of Tokyo - 2) Research Assistant, The University of Tokyo Abstract: Phase diagrams for the $CaO-SiO_2-FeO_x$ system at low oxygen partial pressure are necessary for the analysis of smelting reaction and ore sintering process. In this study, phase diagrams for the $CaO-SiO_2-FeO_x$ systems at low oxygen partial pressure were observed at 1573K. The effect of addition of small amount of Al_2O_3 on the liquidus lines of the $CaO-SiO_2-FeO_x$ system was also investigated. #### 1. Introduction Phase diagrams for the CaO-SiO₂-FeO_x system are important thermodynamic data for the analysis of melting mechanism of sinter in sintering process and smelting reaction. The phase diagram for the CaO-SiO₂-Fe₂O₃ system in air and that for the CaO-SiO₂-FeO system equilibrated with iron were measured as shown in Figs. 1 and 2¹⁾. The CaO-FeO-Fe₂O₃ and SiO₂-FeO-Fe₂O₃ systems with changing partial pressure of oxygen are also reported.²⁾ However, the phase diagrams for the CaO-SiO₂-FeO_x system at the oxygen partial pressure between air and the oxygen partial pressure determined by Fe-FeO equilibrium are not available. Characteristics of sinter ore in ironmaking process depend on the formation of melts during sintering. It is necessary to control melting behavior for the development of pretreatment technique of iron ore. Therefore, knowledge of phase relationship for the CaO-SiO₂-FeO_x system at low oxygen partial pressure is required. Recently, the alumina content of iron ore is increasing because of the shortage of high quality iron ore. The effect of Al₂O₃ on liquidus for the CaO-SiO₂ -Fe₂O₃ system is observed only in air and that at low oxygen partial pressure is not available. Therefore, the phase diagrams for the $CaO\text{-}SiO_2$ -FeO_x system at various low oxygen partial pressures and the effect of Al_2O_3 addition on liquidus of phase diagram are observed in the present study. # 2. Experimental A chemical equilibration technique was employed to measure the phase relationships for the CaO-SiO₂-FeO-Fe₂O₃ and CaO-SiO₂-FeO-Fe₂O₃-Al₂O₃ system. Eight grams of mixture of reagent grade of CaO, SiO₂, Al₂O₃ and Fe₂O₃ powders melted in a platinum crucible are equilibrated with a pellet of saturating oxide ($2CaO Fe_2O_3$, Fe_2O_3 , $2CaO SiO_2$, $3CaO 2SiO_2$, CaO·SiO₂ and SiO₂) in CO-CO₂ atmosphere. The oxygen partial pressure was controlled by the CO/CO₂ ratio according to reaction (1). A sample melt was held for 20 hours at 1573K in an electric furnace and after equilibration, melts in a platinum crucible were quenched in an argon flow. The content of CaO, Fe^{2+} , Fe^{3+} , SiO_2 , and Al_2O_3 were analyzed by titration, gravimetry, and ICP spectrometry, respectively. Pellets of 2CaO·Fe₂O₃, Fe₂O₃, 2CaO·SiO₂, 3CaO·2SiO₂, and CaO·SiO₂ were prepared by pressing and sintering a mixture of powder of reagent grade of oxides. Oxide melts were separated from a pellet of saturating oxide by platinum plate as shown in Fig. 3 to prevent the contamination of a pellet oxide into melts when the sample was quenched. $$CO(g) + \frac{1}{2}O_2(g) = CO_2(g)$$ (1) ### 3. Results and discussion ## 3.1. The CaO-SiO₂-FeO-Fe₂O₃ system The isothermal phase relationships for the CaO-SiO₂-FeO-Fe₂O₃ system at 1573K with the oxygen partial pressure from 1.8×10^{-6} to 9.7×10^{-9} atm are shown in Figs. 4 and 5. The phase diagram is shown as CaO-SiO₂-(FeO+Fe₂O₃) ternary system. In comparison with the phase diagrams shown in Figs. 1 and 2, liquid phase area is enlarged at high iron oxide region with decreasing oxygen partial pressure. The effects of the decrease of oxygen partial pressure on the liquidus of $2\text{CaO} \cdot \text{SiO}_2$, $3\text{CaO} \cdot 2\text{SiO}_2$, and $\text{CaO} \cdot \text{SiO}_2$ were small. The liquidus line of SiO_2 at high SiO_2 region is influenced by the oxygen partial pressure. The relationship between the $(Fe^{3+})/(Fe^{2+})$ ratio and basicity ((mass%CaO)/(mass% SiO₂)) on 2CaO·SiO₂ liquidus with $P_{O2}=1.8\times10^{-8}$ atm at 1573K is shown in Fig. 6. The $(Fe^{3+})/(Fe^{2+})$ ratio increases with increasing ((mass%CaO)/(mass% SiO₂)). ## 3.2. The CaO-SiO₂-FeO-Fe₂O₃-Al₂O₃ system The isothermal phase relationship for the CaO-SiO₂-FeO-Fe₂O₃-5mass% Al₂O₃ system at 1573K with the oxygen partial pressure of 1.8×10^{-8} atm is shown in Figs. 7 as CaO-SiO₂ - (FeO+Fe₂O₃) ternary system. The liquid area for the CaO-SiO₂-FeO-Fe₂O₃ -5mass% Al₂O₃ system is almost same as that for the CaO-SiO₂-FeO-Fe₂O₃ system observed at the same oxygen partial pressure. Therefore, the effect of the addition of Al₂O₃ on the liquid area is small. Comparing Fig. 7 with the phase diagram for the CaO-SiO₂-Fe₂O₃-2mass% Al₂O₃ system in air³⁾, the decrease of oxygen partial pressure enlarges the liquid area at high iron oxide region. The relationship between the $(Fe^{3+})/(Fe^{2+})$ ratio and basicity ((mass%CaO)/(mass%SiO₂)) on 2CaO'SiO₂ liquidus with $P_{O2}=1.8x10^{-8}$ atm at 1573K is shown in Fig. 8. The $(Fe^{3+})/(Fe^{2+})$ ratio increases form 0.4 to 1.6 with increasing ((mass%CaO)/(mass%SiO₂) from 1 to 10. ### 4. Conclusions Isothermal phase relationships for the $CaO-SiO_2-FeO_x-Al_2O_3$ systems at 1573K with low oxygen partial pressure were investigated by a chemical equilibration technique. The effects of oxygen partial pressure and the addition of Al_2O_3 on the liquid area of the system were observed. For the $CaO-SiO_2-FeO_x-Al_2O_3$ system, liquid phase range is enlarged at high iron oxide region with decreasing oxygen partial pressure. ### References - 1) Ernst M. Levin, Carl R. Robbins, and Howard F. McMurdie: Phase Diagrams for Ceramists vol. 1, American Ceramic Society, Inc., (1964), 204(Fig.656), 228(Fig.586). - 2) Y.Takeda, S.Nakazawa and A.Yazawa: J. Mining Metall. Inst. Japan, 97 (1981), p.473. - 3) C.K. Yang, T.Shoji and S.Takenouchi: J. Mining Metall. Inst. Japan, 94 (1978), p.575. Fig. 1. Phase diagram for the CaO-SiO₂-Fe₂O₃ system in air. Fig. 2. Phase diagram for the $CaO\text{-}SiO_2\text{-}FeO$ system equilibrated with iron. Fig. 3. Cross section of platinum crucibles. Fig. 4. Liquidus line for the CaO-SiO₂-(FeO+Fe₂O₃) system with $P_{\rm O2}$ =9.7x10⁻⁹ to 8.0x10⁻⁸ atm at 1573K, Fig. 5. Liquidus line for the CaO-SiO₂-(Fe₂O₃,+FeO) system with $P_{\rm O2}=1.8x10^{-6}$ atm at 1573K. Fig. 6. Relationship between the $(Fe^{3+})/(Fe^{2+})$ ratio and $(mass\%CaO)/(mass\%SiO_2)$ on $2CaO\cdot SiO_2$ liquidus with $P_{O2}=1.8x10^{-8}$ atm at 1573K for the $CaO\cdot SiO_2$ - $(Fe_2O_3, +FeO)$ system. Fig. 7. Liquidus line for the CaO-SiO $_2$ -Fe $_2$ O $_3$ -FeO-5mass% Al $_2$ O $_3$ system with P $_{O2}=1.8x10^{-8}$ atm at 1573K. Fig. 8. Relationship between the $(Fe^{3+})/(Fe^{2+})$ ratio and $(mass\%CaO)/(mass\%SiO_2)$ on $2CaO^*SiO_2$ liquidus with $P_{O2}=1.8x10^{-8}$ atm at 1573K for the CaO^*SiO_2 - $(Fe_2O_3,+FeO)$ - $5mass\%Al_2O_3$ system.