
7KHUPRG\QDPLF� FRQVWUDLQWV� DULVLQJ� IURP� WKH� SRO\PHULF� DSSURDFK� WR� VLOLFDWH� VODJV�� WKH
V\VWHP�&D2�)H2�6L2��DV�DQ�H[DPSOH

Giulio Ottonello (1)

(1)Permanent Earth Sciences Technical Observatory, c/o DIPTERIS Università di Genova,
Italy, Corso Europa 26, 16132 Genova (Italy).

$%675$&7
Systematization of mixing properties in the system CaO-FeO-SiO2 at the liquid state is carried
out in the framework of some simplifying assumptions arising from polymer theory. The bulk
Gibbs free energy of mixing is conceived as composed of a chemical interaction term and a
mechanical strain energy term arising from chain elasticity of polymeric units. The chemical
interaction is resolved adopting a modified Toop-Samis approach. The polymerization path is
shown to be compositionally dependent upon the local value of the polymerization constant Kp

that, in its turn is exponentially related to the values attained at the limiting binaries.
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The mechanical strain energy is shown to be satisfactorily reproduced by the equation
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where Siν  is the local mean polymerization extent and x/a is a bending term taking into
account the relative arrangement of monomers in the chain.
The model reproduces fairly well the experimentally observed thermodynamic activities of the
components along the limiting binaries and within the ternary field. The similarities of the
polymeric approach with the Flory-Huggins interaction model, the modified quasi-chemical
approach of Pelton-Blander[2] and the two-sublattice formulation of Hillert et al. (1990)[1]  are
discussed to some extent.
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The recent progress in computer assisted thermodynamic analysis of phase diagrams and
thermodynamic data allows simultaneous systematization of mixing properties on a self-
consistent approach. Nevertheless, thermodynamic data are often controversial even along
simple binary joins such as CaO-SiO2, as noted by Hillert et al.[1]. Moreover, the conformation
of the excess energy terms in liquid phases with strong structural ordering about certain
intermediate compositions (i.e. the negative "V" shaped conformation of the enthalpy of
mixing terms and the "M" shaped of the entropy of mixing curve discussed by Pelton and
Blander [2]) is not easily reproduced by the usual polynomial expansions in the mole fractions
of components but requires less empirical formulations.
It will be shown hereafter that systematization of mixing properties in multicomponent silicate
slags may be attempted in the framework of some simplifying assumptions arising from
polymer theory. The bulk Gibbs free energy of mixing is conceived as composed of a chemical
interaction term and a mechanical term arising from chain elasticity of polymeric units. The
system CaO-FeO-SiO2 is selected as case study since the CaO binary exhibit a high degree of
ordering about the composition XSiO2 ≅ 1/3 and the network-modifiers Fe2+ , Ca2+ have
contrasting effects on the extension of polymer units, due to their intrinsically different
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atomistic properties, which result in rather complex activity-composition relations in the
thernary field, as already observed long ago by Elliott[3].

,,�(;3(5,0(17$/�(9,'(1&(6

A. CaO - SiO2
Activities of CaO in CaO-SiO2 liquid slags have been measured by various authors in the
compositional range 7.0X4.0

2SiO ≤≤  at temperatures comprised between 1773 K and 1873 K
[4,5,6]

. Activity data are available within the same compositional range and at the same T
conditions for the SiO2 component

[4,7,8,9]
 . Although somewhat scattered, the experimental

results denote an extremely low activity of the dissolved basic oxide, which, based on the data
plot shown in Figure 1 is apparently little affected by temperature. The scatter of data in the
measured activity of SiO2 is more impressive, as visible in Figure 2, and no definite T-
dependence can be envisaged. Nevertheless, the CaO-SiO2 phase diagram denote the existence
of a miscibility gap on the SiO2-rich part of the join. Based on the experimental sources 

[10,11]

the monotectic occurs at 01.071.0X
2SiO ±=  at T = 1971 K, but there is no agreement on the

consolute temperature and asymmetricity of the gap.

B. FeO - SiO2
Activity data of FeO along the join FeO-SiO2 are resumed in Figure 3. The experiments cover
a wider T range with respect to the CaO-SiO2 binary

[12,13,14]  and here the effect of temperature
on measured activities is rather evident.
According to the phase diagram reported by Muan and Osborne 

[15] also along this join there is
a miscibility gap which, at room pressure, extends from approximately 57% by weight of SiO2
to 95%. The monotectic occurs at about the same temperature of the CaO-SiO2 binary (1951
K) and the consolute temperature occurs at about 2215 K.

C. CaO - FeO - SiO2
The first attempt to construct activity surfaces of the oxide components in the ternary system
CaO-FeO-SiO2 from the data on the limiting binary joins is due to Elliott

[3] . The elongation of
aFeO isoactivity lines

[3]
 denotes a cusp whose conformation is visualized in the tridimensional

representation of Figure 4. It is rather evident that this sort of activity-composition relation
implies the existence of high order interaction terms which cannot be derived by a simple
analysis of the limiting binaries. Later experimental activity measurements of the FeO
component in the CaO-FeO-SiO2 system at T= 1723 and 1823 K were then been performed by
Timucin and Morris 

[16]
. The experimental aFeO curves do not differ much from the estimates of

Elliot 
[3]

 for T= 1873 K, confirming thus the marked non-ideality of the investigated system.

,,,�$66(660(17
In line with recent findings about homopolymer and copolymer melts[17] we consider the bulk
free energy of mixing of the phase as composed of two distinct contributions: a chemical
interaction term and a mechanical strain energy (chain elasticity), much subordinated in
magnitude but important to understand the nature of liquid solvi at high SiO2 amounts.

&KHPLFDO�LQWHUDFWLRQ
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It has been already noted long ago 
[18,19]  that the conformation of the Gibbs free energy of

mixing curve along MO-SiO2 binary joins is fairly well reproduced by the simple relation:

( )
pmixing KlnRT
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O
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= (1)

where Kp is the polymerization reaction constant between singly bonded (O-), doubly bonded
or "EULGJLQJ" oxygen (O°) and "IUHH" oxide ions (O

2-
) expressed in terms of moles per unit

mole of melt. Based on the above equation, the Gibbs free energy of mixing along any MO-
SiO2 binary arises entirely from interactions in the anion sublattice, represented by the simple
equilibrium:

−− +⇔ 20 OOO2 (2)

as already suggested by Fincham and Richardson
[20]

. In this simple acceptation, the activity of
the (completely dissociated) dissolved basic oxide aMO reduces to the activity of the oxide ion
O2-, which, in a Temkin-model approach

[21]  is reconducted to the molar fraction of O2- with
respect to the bulk of anions in the anion sublattice, i.e.
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In solving thermodynamic activity on a Temkin model basis, Toop and Samis
[18,19]  observed

that the mean extension of the polymer chains is univocally defined by a "SRO\PHUL]DWLRQ�SDWK"
depicted in terms of mean number of silicon atoms per polymer unit ( ∑=ν anionsN

2SiOSi )

versus the stoichiometric ratio ( ) ( ) ( )[ ]IV0 SiOOO ++−−  (cf. Figures 2,3 in ref. 
[18] ). The further

assumption  that a single polymerization path of general validity in the ternary system CaO-
FeO-SiO2 may be proposed on the basis of viscosity data

[22]
 cannot however be shared. In fact,

to each MO-SiO2 system pertain a different reaction constant Kp,  and, being the activity of
the basic dissolved oxide MO implicitly defined by the partial derivative of the Gibbs free
energy of mixing at any point of the compositional space of interest, we have:
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where terms in brackets denote number of moles and XMO is the molar fraction of a generic
basic oxide MO in a MO-SiO2 binary join.
 Indeed, distinct "SRO\PHUL]DWLRQ� SDWKV" relating the mean number of silicon atoms in the
polymeric units ( Siν ) to the relative proportion of singly bonded oxygen in the unit

( ) ( ) ( )[ ]IV0 SiOOO ++−−   may be calculated for the two limiting binaries CaO-SiO2 and FeO-
SiO2 on the basis of the system of equations 4 to 9. These paths differ substantially from the
general path proposed long ago by Toop and Samis

[18,19]
 and, more importantly, differ sensibly

from each other (Figure 5). Failure to ascertain this fact, prevented Toop and Samis to
recognize that the Gibbs free energy of mixing within the ternary field CaO-FeO-SiO2 is
implicitly defined by a linear extension of the limiting properties valid at the binaries, as it will
be shown here later on.

6WUDLQ�HQHUJ\
Since the Toop-Samis model embodies ideal and excess Gibbs free energy contributions to the
Gibbs free energy of the liquid MO-SiO2 mixture in a single term (cf. equation 1), it is
conceptually appropriate to depict the Gibbs free energy amount necessary to the opening of a
liquid solvus at high SiO2 content as an elastic energy contribution, that, for a chain of Siν

monomers extended to a distance x can be expressed as 
[17]

 :
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x/a in equation 10 is a bending term taking into account the relative arrangement of monomers
in the chain. This term is here arbitrarily expanded in a polynomial of type:

...NNNN
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2
SiO2SiO1 2222

+⋅χ+⋅χ+⋅χ+⋅χ= (11)

and the strain coefficients χ1…χn calculated at the various T conditions with a non-linear
minimization routine depict a linear T-dependence. Since the polymerization path along any
join is defined in terms of Siν  vs. 

2SiON the strain energy calculated along a given binary at

various T conditions is intimately related to the polymerization extent along any particular
compositional path.

,9�&$/&8/$7,216

A. CaO - SiO2

&KHPLFDO�LQWHUDFWLRQ
From the usual expression of the thermodynamic activity of a component in mixture we get:
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Being the mean number of monomers in the polymer chain defined as:

( ) ∑=ν anionsSiO 2Si (14)

adopting Temkin model activities of the fused salts it quite evident that along any binary join
we may pose (cf. eq. 3):
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Though the domain of equations  12-13 spans the entire compositional range, it is obvious that

Siν  can be never lower than unity (i.e. monomer) and, consequently, the limit of maximum
depolymerization defines a limiting activity represented by:
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(16)

As it is extensively discussed elsewhere[23], CaO is an essentially basic oxide and its dissociation
implies strong depolymerization effects on the anion matrix (hence, low Kp values). Indeed, as
shown in Figures 1, 2, the existing experimental activity data of both CaO and SiO2

components in mixture may be reproduced fairly well adopting a sufficiently low
polymerization constant (i.e. Kp=3×10-4 in Figures 1 and 2).
Since experimental activities are relative to the solids at standard states, model activities (liquid
mixtures) are scaled to the solid state of reference by applying:

[ ]RTGexp
a

a
lnso

MO
MO

)l(

)s( ∆−= (17)

where ∆Gsoln is the Gibbs free energy of solution of the pure oxide MO in the pure MO melt.
Being the activity of the dissolved oxide extremely low in the experimentally investigated
compositional range, the adoption of reasonable estimates of  ∆Gsoln for CaO is crucial in
depicting the actual form of the activity curve1. As we may see comparing model activities of

                                                  
1 Two different appraisals of ∆Gsoln were adopted to this purpose: a Gibbs free energy of solution
based on equation 38 in reference 2 and the assessment of Dinsdale[24]   (quoted in reference 1). As
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solid CaO with experimental observations (Figure 1), within the uncertainty range ascribable to
the Gibbs free energy of the pure CaO  component, the observed thermodynamic behavior of
the CaO-SiO2 liquid mixture complies with the limiting condition represented by equation 16.
If we disregard the existence of such limit, we would obtain a much lower (and experimentally
inconsistent) thermodynamic activity of the dissolved basic oxide (dotted line in Figure 1). This
constraint, apparently obvious, means thus indeed that the polymeric model, which adopts
SiO4

4- monomers as fundamental building units, has a non-implicit thermodynamic fundament.
For the same binary system we see that the adopted polymerization constant reproduces fairly
well the experimental thermodynamic activity of the SiO2 component over most part of the
investigated compositional range (Figure 2). A comparison of the model estimates of CaO and
SiO2 activities with previous assessments (Figures 6 and 7) indicate a substantial agreement
with most part of the compositional range. The comparison is particularly stringent with the
assessments based on the IRSID cellular model 

[26,27]
 .

6WUDLQ�HQHUJ\
The strain energy contribution to the bulk Gibbs free energy of mixing described by equation
10 implies the existence of elastic forces which are approximately Hookian in nature
(extensively used in literature to describe the elasticity of rubberlike materials, by the way

[17]
 ).

The elastic strain energy depends upon the bending term x/a (which basically represents the
effect of covalent bonding on the relative arrangement of monomers in the polymer chain), and
on the polymerization extent (i.e. the mean number of silicon atoms in the chain, Siν ). To assess
the contribution of the elastic strain to the bulk Gibbs free energy of mixing of the liquid
silicate it is thus almost compulsory to quantify first the extent of polymerization (i.e. the
chemical interaction term). The T-dependence of the chemical interaction term was thus first
parameterized on the basis of the various assessments of the bulk Gibbs free energy of mixing
at different T 

[1,2,26,27]
 and the elastic strain energy contribution to the Gibbs free energy of the

liquid was then refined stemming from the experimentally observed loci of binodal
decomposition. This involved initially the computation of the compositional dependence of the
bending term x/a at each investigated T condition (i.e. the strain coefficients χ1…χn of the
polynomial expansion 11) through a non linear minimization procedure[36] and then, the linear
regression of the strain coefficients on T. The results of this exercise are shown in Figure 8 in
terms of computed bending factors and computed elastic strain energy versus composition, at
the various T of interest, and in Table 1 in terms of model parameters. The computed bending
terms indicate increased departure from linear arrangement with the increase of silica amount
in the system (note that being the x/a term squared in equation 10, both positive and negative
x/a values are appropriate, which is typical of angular deformation terms). It may be also noted
that the effect of T is indicative of enhanced relaxation at high thermal regimes.  As we may
see in Figure 8, the computed elastic strain energy is rather asymmetrical, in the compositional
space of interest, and quite limited in magnitude, attaining less than 1 kJ/mole at 1500 °C and
decreasing progressively with the increase of T, to virtually disappear at 1900°C. The
conformation of the resulting CaO-SiO2 liquid solvus is shown in Figure 9, where it is
compared with the experimental observations of Ol'shanskii

[11]
  and Tewhey and Hess

[10]
 . It is

rather asymmetrical with respect to the consolute composition, in line with the experimental
                                                                                                                                             
shown in Figure 1, with the assessment of Dinsdale[24]  we get slightly higher activities of the solid
oxide (upper dashed line), with respect to the assessment of Pelton and Blander[2], Kp and T being
equal (lower dashed line). The calculation of the activity of solid silica poses less problems since
the Gibbs free energies of solution of the pure solid polymorphs of SiO2 (both tridymite and
cristobalite) in pure SiO2 liquid are very low at all T of interest in this study and the various
assessments (equation 39 in reference 2 and Barry [25]) give concordant results.
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observation of reference 
[10]

 , but more expanded, suggesting that the consolute T is actually
intermediate between those hitherto proposed 

[10,11]
 . The monotectic is also compositionally

consistent with the experimental observations,  but its temperature is somewhat higher with
respect to what experimentally observed (i.e. 1992 K against 1971 K).  The observed features
were obtained assuming a simple Arrhenian dependence on T of the polymerization constant
Kp (i.e. lnKp=-15372/T). As shown in Figure 10, this constraint is consistent with the
assessments based on the modified quasi-chemical approach 

[10]
 (and also with the most recent

applications of the IRSID cellular model 
[27]

 , although not shown). The computed chemical
interaction explains most part of the bulk Gibbs free energy of mixing, and the elastic strain
contributions address the minor fluctuations observed at high SiO2 content. Since the strain
energy is along this join greatly subordinated with respect to the chemical interaction term
(compare Figures 8 and 10) and its computation is somewhat path-dependent, the obtained
conformation of the CaO-SiO2 should be regarded as provisional and subjected to further
improvement. Figure 11 shows Finally how the computed bulk excess Gibbs free energy of
mixing compares with the initial estimates of Elliott

[3]
  and Darken

[34]
 and with more recent

appraisals
[2]

 . We will return on this figure later when dealing with the chemical interaction in
the ternary CaO-FeO-SiO2.

B. FeO - SiO2
&KHPLFDO�LQWHUDFWLRQ
In Figure 3 model activity curves of ferrous oxide component in the binary FeO-SiO2 are
superimposed to experimental observations. Being FeO a less basic oxide with respect to CaO,
its capability of depolimerizing the anion matrix is less pronounced and the maximum
depolimerization limit is never attained (cf. Figure 5). Since the experimentally investigated T
range is much wider with respect to the CaO-SiO2 binary, we may observe here in a more
direct fashion that the polymerization constant is appreciably affected by T, ranging apparently
from 0.10 at 1598 K to 0.16 at 2153 K and 0.18 at 2233 K. Apparently, model calculations
slightly overestimate the activity of FeO at high T and low SiO2 .  Disregarding this minor
incongruence, model activities seem to conform quite well to the experimental results in the
low SiO2 part of the diagram. Again, the observed T effect on Kp can be reconducted to an
Arrhenian dependence, similarly to what observed for the CaO-SiO2 join (i.e. lnKp=-3600/T).

6WUDLQ�HQHUJ\
Stemming from the imposed values of polymerization constant, the mean number of silicon
atoms in the chain was first computed at the various T-XSiO2 conditions, and the strain
coefficients were then derived, analogously to what done for the CaO-SiO2 binary, adopting
this time the observations of Muan and Osborne[15] , to conform the solvus. The computed
bending terms (Figure 12) are somewhat higher with respect to those computed for the CaO-
SiO2 join, T being equal, as higher is the resulting strain energy. This is primarily the result of
the different polymerization paths followed along the two joins (see Figure 5 and the previous
discussions). Again, the computed strain energy is highly asymmetrical in the compositional
space of interest (Figure 12) but not so subordinate with respect to the chemical interaction
term as observed along the CaO-SiO2 binary. This may be appreciated from Figure 13 where
the computed excess Gibbs free energies of mixing at T=1600 °C are compared with various
literature assessments. The substantial contribution of the elastic strain at high SiO2 content is
quite evident when comparing the bulk excess Gibbs free energy of mixing (solid lines) with
the simple chemical interaction (dotted lines). In Figure 14 the computed solvus is compared
with assessments based on the modified quasi-chemical approach

[2,37]
  The obtained
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conformations are in substantial agreement for what concerns the monotectic but the consolute
T of the hybrid model is 100-150 K higher with respect to the estimates based on the modified
quasi-chemical approach

[2,37]
 (which are consistent, by the way, with the observations of Muan

and Osborne[15] ). Again, being the computation of the strain energy somewhat path-dependent,
we stress that the obtained conformation of the FeO-SiO2 solvus should be regarded as
provisional and subjected to further improvement.

C. CaO - FeO - SiO2
The chemical interaction in the thernary field is readily obtained assuming the polymerization
constant of the complex melt to be exponentially related to the molar fractions of the dissolved
basic oxides:
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The reasons for this assumption are detailed elsewhere 
[23]  and are based on the observation

that the mean polarization state of the various ligands (mainly oxide ions in natural silicate
melts) and their ability to transfer fractional electronic charges to the central cation,
represented by the Jørgensen function

[25]
 of the ligand, are linearly related to composition

[23,28-34]

.
Adopting this simple equation and embodying in the Gibbs free energy of the mixture a
cationic mixing term in the form
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and an elastic strain energy contribution linearly related to composition, i.e.
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the observed conformation of the Gibbs free energy of mixing surface in the ternary CaO-FeO-
SiO2 is obtained with reasonable approximation. This fact may be appreciated when comparing
the computed excess Gibbs free energy of mixing at T=1600°C with the assessment of Elliott [3]

(Figure 15). It must be noted, to this purpose, that in 1955 no experimental activity data of
either SiO2 or CaO were available to the Author and his appraisal of the binary interactions
between CaO and SiO2 were entirely based on the pioneering work of Darken

[35]
.  As shown in

Figure 11,  the excess Gibbs free energy curve along the binary join CaO-SiO2 adopted by
Elliott

[3]
 is somewhat underestimated with respect to the values based on thermodynamic

activity. For comparative purposes we adopted thus here a provisional value Kp=0.002,
consistent with Elliott's appraisal (Figure 11), though we have already seen that a
polymerization constant Kp=3×10-4 is the most appropriate along the CaO-SiO2 binary, at this
temperature. Analogously, for the FeO-SiO2 join, a polymerization constant Kp=0.21 is more
appropriate to the estimates of Elliott[3] (which are essentially based on the experimental work
of Shumann and Ensio[13]) with respect to Kp=0.146, based on the more recent experimental
activity data (cf. Figures 3 and 13). It should be also noted that, in computing the Gibbs free
energy of mixing in the ternary field, the same cationic excess Gibbs free energy terms adopted
by Elliott

[3] were used (corresponding roughly to a regular interaction parameter WCaO-FeO ≅ -33
kJ/mole, cf. equation 19).
From the computed Gibbs free energy surface at 1600°C (Figure 15) activity values of the FeO
component in mixture were obtained by geometrical derivation, moving along pseudobinary
lines, from the CaO-SiO2 join toward the FeO apex. The resulting activity surface is shown in
Figure 16, which may be compared with the corresponding surface of Figure 4. The inherent
precision of the simulation is in term of FeO activity 0.099 (standard error). The precision
improves somewhat if one treats the cationic interaction parameter as a variable (best fit
obtained with WCaO-FeO = -16.29 kJ/mole; standard error=0.076). Repeating this exercise at
T=1450 °C and T=1550 °C and comparing model results with the experimental observations of
reference 16 the standard error on the estimated FeO thermodynamic activity if further reduced
to 0.027 and 0.040, respectively (best fit obtained with WCaO-FeO = 2.59 and 7.11 kJ/mole,
respectively).

9�',6&866,21
The excess Gibbs free energy of mixing arising from chemical interaction between polymeric
species in copolymer melts is commonly described in terms of a Flory-Huggins interaction
parameter χAB

[17]:

ABAB T

Z ω∆=χ
N

(23)

where ∆ωAB is the interaction energy per monomer  between A and B monomers, N is the
Boltzmann constant and Z is the number of nearest neighbor monomers to a copolymer
configuration cell.  The interaction energy,  i.e. �WKH�FKDQJH�LQ�HQHUJ\�IRU�WKH�IRUPDWLRQ�RI�DQ
XQOLNH�FRQWDFW�SDLU"[41]  is:

 ( )BBAAABAB 2

1 ω+ω−ω=ω∆ (24)

and is commonly expanded as[41]:

shAB T ω∆−ω∆=ω∆ (25)

In this new notation,  ∆ωAB  acquires the character of a standard state free energy change for
unit displacement of the process[42].
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The Toop-Samis model considers the bulk Gibbs free energy of mixing (i.e. not only the excess
terms) along any given MO-SiO2 binary join at the liquid state as arising entirely from
interactions between "SRO\PHU� VHJPHQWV" (in Flory’s terminology) and formalizes it as an
interaction between different oxygen species (O-, O° and O

2-
; Fincham-Richardson approach).

Actually, as extensively discussed elsewhere[23], the interaction of the basic oxide MO with
SiO2 may be conceived as composed of two steps: a basic dissociation followed by an anionic
interaction, i.e.:

−+ +⇔ 22 OMMO (26)
−− ⇔+ O2OO 20 (27)

We may conceive thus indifferently as "LQWHUDFWLQJ� VSHFLHV" either the free oxygen ions O2-

(whose availability depend upon the Lux-Flood acid-base property of the dissolved oxide MO)
and the bridging oxygen O0, or the terminal segments of the polymer units (i.e. the non-
bridging oxygen O-). In both acceptations, the number of interactions (or "FRQWDFWV" in Flory's
terminology[41]) is represented by (O-)/2. We may thus envisage a strict analogy between the
Flory-Huggins model (interaction between "polymer segments"[41]) and the Toop-Samis model
(interaction between polymer units). The extension from one model to the other implies simply
the acceptation of the SULQFLSOH�RI�HTXDO�UHDFWLYLW\�RI�FR�FRQGHQVLQJ�IXQFWLRQDO�JURXSV which
states that the reaction constant of equilibrium 27 is not affected by the length or the
conformation of the interacting polymeric species. In light of this analogy the energy term
RTlnKp (which is the energy spent in condensation) assumes the same significance of the
change in energy involved in the formation of an "XQOLNH�FRQWDFW�SDLU" ∆ωAB, albeit translated
in a molar notation. Since, in Flory's words the notation 24 is "D� UHVWULFWHG� YDULDWLRQ�RI� WKH
TXDVL�FKHPLFDO�PHWKRG�XVHG�E\�*XJJHQKHLP" (cf. page 507 in reference 41), the analogy is
readily extended to the quasi-chemical approach and to its successive modifications[2] .
It has been shown here that along both the limiting binary joins CaO-SiO2 and FeO-SiO2 of the
ternary system CaO-FeO-SiO2, the polymerization constant is exponentially related to the
inverse of the absolute temperature (i.e. lnKp,CaO-SiO2=-15372/T ; lnKp,FeO-SiO2=-3600/T). It is
obvious then that the chemical interaction along these joins is purely enthalpic (cf. Eq. 1), and
that entropic contributions are limited to the mechanical strain energy. It is of interest to this
purpose to recall that , as discussed by Pelton and Blander (1986)[2], whenever a large negative
∆ωAB is involved  in interactions between unlike pairs,  then the configurational contribution to
the Gibbs free energy of mixing should be zero. The fact that the quasi-chemical model  assign
a non-zero configurational contribution to large negative interactions is a result of the
approximate nature of the adopted entropy expression (Eq. 14 in reference 2). The polymeric
approach (which quantifies exactly the number of interactions) proofs thus more precise (at
least in this aspect) with respect to the Flory-Huggins or the quasi-chemical approaches.
To address the minor energy fluctuations responsible of the opening of solvi at high SiO2

content in both the limiting joins CaO-SiO2 and FeO-SiO2 at the liquid state, we adopted the
mechanical strain energy term represented by expression 10. This is a form of energy usually
adopted in the theory of microphase separation to limit (and not to enhance) decomposition..
The energy contribution represented by equation 10 is in fact usually conceived as "DQ�HQWURSLF
UHVWRULQJ� IRUFH� WKDW� VHUYHV� WR� OLPLW� WKH� SKDVH� VHSDUDWLRQ� WR�PHVRVFRSLF� GLPHQVLRQV" [17]. Its
utilization in the present context is thus somewhat arbitrary. The force (approximately Hookian
in nature) arises from the covalent linkages within the monomeric units, which affect their
relative arrangement. Since the polymeric approach adopted here quantifies the mean number
of Si atoms in the polymeric species at any SiO2 content along a given binary join, this form of
energy may be also parameterized with sufficient accuracy within the chemical space of interest
(Eqs. 20, 21 and 22).  As we may see in Figure 17, the computed entropic contribution to the
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bulk Gibbs free energy of mixing for the liquid FeO-SiO2 system bears close analogies with the
excess configurational term computed by Pelton and Blander (1986) [2] with the modified
quasi-chemical approach. Which is a further confirmation of the close analogies between the
two models.
We have shown finally that chemical interactions within the ternary systems CaO-FeO-SiO2 are
completely fixed by the interaction properties observed along the limiting binaries CaO-SiO2

and FeO-SiO2. I.e. no further parameters are needed to conform the excess Gibbs free energy
surface within the ternary field with sufficient precision, besides the limiting values of the
polymerization constant (cf . Figures 4, 15, 16 and Eqs. 18 to 22). This fact, which has
obvious implications in the treatment of mixing energetics in chemically complex slags, has
been long time hindered by an erroneous interpretation of the actual significance of the Temkin
model activity of fused salts.
If one identifies the polymerization constant of the Toop-Samis model (i.e. Kp in Eq. 1) with
the constant of the reaction step 27, then obviously a single polymerization path would be
followed along any MO-SiO2 binary join, independently on the actual nature of MO[18,19].
Nevertheless, if we wish to translate  the computed activities of the Fincham-Richardson
approach into (experimental) activities with a standard state notation of liquid oxide at T,P of
interest, then we must be conscious that, although the Temkin model (implicit in the Toop-
Samis approach) demands K26=1, the Toop-Samis model assumes a completely basic behavior
for DOO the various non-SiO2 molten components in mixture. The quadratic equation (6) in O-

which allows the calculation of the anionic integral free energy of mixing is in fact entirely
based on mass and charge balance arguments involving complete dissociation of the MO oxide
in a MO-SiO2 system. We may address this apparent inconsistency as an energy gap between
the standard state of completely dissociated (Temkin model) oxide component MO*, for
which:

 ( )−+ ⋅+µ=µ 2O2M

*
melt,MOmelt,MO aalnRT , (28)

and the true molten oxide component, for which

melt,MO
0

melt,MOmelt,MO alnRT+µ=µ (29)

We have thus

1
26

2O2M

melt,MO
0

melt,MO
*

melt,MO K
aa

a

RT
exp −

−+

=
⋅

=








 µ−µ
(30)

Equation (30) is the only key on which experimental activities may be compared with a
detailed solubility model involving ionic fractions on structural sites[23].

We spend finally few words about the conceptual similarities of the present model with the
two-sublattice formulation of Hillert et al. (1990)[1] . In the polymeric approach developed
here, the true extension of the polymeric unit is computed through a combined mass balance -
elctroneutrality - energy approach, while in the two-sublattice model the mixing terms are
conceived as arising from interactions among three fictive units (SiO4

4-, SiO3
2- , SiO0) taken as

representative of the actual anion matrix. It should be noted that the exclusion of polymeric
units from the model is not a problem "SHU� VH" and has also been disregarded in preceding
formulations

[38] .  According to Hillert et al. (1990) 
[39]

 in fact physically each SiO0 represents
two bridging oxygens (O0 in our notation), each SiO3

2- represents one singly bonded oxygen (O-

) and two bridging oxygens and each SiO4
4-, represents four singly bonded oxygens. The fact

that polymeric units such as Si2O7
6- and Si3O10

8- , known to form even at low acidity
conditions

[40]
 are not considered in the model has no apparent drawbacks. The ionic fractions of

O2-, O- and O0 computed by Hillert et al. (1990) [1].  for T= 0 K are in fact identical to the ionic
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fractions arising from the Toop-Samis model  when a sufficiently low polymerization constant
is adopted. Though, as we have already seen, these fractions are unrealistic since they violate
the polymeric constraint imposed by the adoption of a Temkin model activity of the dissolved
basic oxide (equations 15, 16), the violation occurs in the intermediate zone where this
incongruence is apparently ineffective in the assessment of the Gibbs free energy of mixing (cf.
Figures 6 and 7).
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7DEOH��: Parameters of the polymeric model
_______________________________________
ln Kp,FeO-SiO2=-3600/T
χ1,FeO-SiO2=-4.7469+0.002328T
χ2,FeO-SiO2=29.316-0.01426T
χ3,FeO-SiO2=-45.828+0.021348T
χ4,FeO-SiO2=32.129-0.013545T

ln Kp,CaO-SiO2=-15372/T
χ1,CaO-SiO2=-3.075+0.0011465T
χ2,CaO-SiO2=29.490-0.01147T
χ3,CaO-SiO2=-81.311+0.032785T
χ4,CaO-SiO2=67.579-0.028095T
_______________________________________
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)LJXUH��: Activity of CaO in  CaO-SiO2 liquid slags at 1500 °, 1600 °C (relative to the solid at
standard state)
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)LJXUH��: Activity of SiO2 in  CaO-SiO2 liquid slags at 1550 °, 1600 °C (relative to the solid at
standard state)
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 )LJXUH��: Activity of FeO in  FeO-SiO2 liquid slags at various temperatures (relative to the
liquid at standard state). Solid lines are model calculations (lnKp=-3600T) depicted at 100 K
intervals.
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)LJXUH��: FeO activity surface at 1600 °C for the liquid FeO-SiO2-CaO ternary system
according to Elliott (1955) (relative to the liquid at standard state and based essentially
on experimental observations of Taylor and Chipman (1943) and Winkler and Chipman
(1946). Graphical representation obtained by inverse-distance contouring of isoactivity
lines.
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)LJXUH� �: Plot of the proportion of singly bonded
oxygen atoms in any silicate anion vs. the mean
number of silicon atome per polymer unit.
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)LJXUH��: Model activity of CaO in  CaO-SiO2 liquid slags at 1500 °C
(relative to the solid at standard state), compared with various
assessments

&D2�6L2���7 �����.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.4 0.45 0.5 0.55 0.6 0.65 0.7

X SiO2

a 
C

aO
(s

)

this work Kp=0.0003

Hillert et al. (1990) 

Kay and Taylor (1960)

Gaye and Welfringer (1984)

Pelton and Blander (1986)



21

�)LJXUH��: Model activity of SiO2 in  CaO-SiO2 liquid slags at
1550 °C (relative to the solid at standard state), compared with
various assessments
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)LJXUH� �: Elastic strain energy contribution to the bulk Gibbs free
energy of mixing (heavy lines) and bending terms (thin lines) computed
for the join CaO-SiO2 at various T conditions.
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)LJXUH� �: Solvus conformation along the join CaO-SiO2, compared with the experimental
observations of Tewhey and Hess (1979) and Ol’shanskii (1951)
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)LJXUH���: Model Gibbs free energy  of mixing of liquid CaO-SiO2 slags at various T compared
with the estimates of the modified quasi chemical approach.
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)LJXUH� ��: Excess Gibbs free energy of mixing of liquid CaO-SiO2 slags at 1600°C. Model
calculations for different values of the polymerization constant Kp are compared with various
assessments.
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)LJXUH���: Elastic strain energy contribution to the bulk Gibbs free
energy of mixing (heavy lines) and bending terms (thin lines)
computed for the join FeO-SiO2 at various T conditions.
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)LJXUH� ��: Excess Gibbs free energy of mixing of liquid FeO-SiO2 slags at 1600°C. Model
computations for different values of the polymerization constant Kp are compared with existing
assessments.
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)LJXUH� ��: Solvus conformation along the join FeO-SiO2,
compared with the assessments based on the modified quasi-
chemical approach.
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)LJXUH�����Excess molar Gibbs free energy of mixing surface for the liquid FeO-
SiO2-CaO system at 1600 °C. Computed values (solid lines) are compared with
Elliott's (1955) estimates (dashed lines).
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)LJXUH� ��: FeO activity surface at 1600 °C for the liquid FeO-SiO2-CaO ternary
system. Graphical representation obtained by inverse-distance contouring of 9900
activity values calculated from model via Eqs. 18-22, adopting, as limiting Kp, 0.21 for
the FeO-SiO2 join and 0.002 for the CaO-SiO2 join, respectively. Assumed cationic
interaction WCa-Fe=-33 kJ/mol. Strain energy contributions included.
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)LJXUH���: Entropic contributions to the Gibbs free energy
of mixing along the join FeO-SiO2 at various T. For
comparative purpose the excess configurational entropy
computed by Pelton and Blander (1986) at T=1000 °C is
also drawn (red line)
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