JOM World Nonferrous Smelter Survey Part IV: Nickel: Sulfide

A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, A.V. Tarasov, and R.T. Jones

This paper presents data on nickel sulfide smelting collected by the authors as part of a worldwide TMS nickel smelter survey. Nickel laterite smelting was the subject of another paper published in the April 2006 issue of JOM.¹ The reader is referred to the latter paper for general information on the survey.

INTRODUCTION

This article presents data on nickel sulfide smelting, gathered from a survey of the 19 world nickel sulfide smelters. The feed to these smelters normally consists of a nickel-copper concentrate, also containing minor amounts of cobalt and platinum group metals (PGMs). In most African smelters, South Africa in particular, nickel is in fact a by-product of PGM mining operations. The product of nickel sulfide smelting is generally a low-iron containing matte that requires further processing to yield market products. Two different smelting technologies are used for processing nickel sulfide concentrates, namely flash smelting and electric furnace smelting. The latter technology is used by all of the PGM-Ni producers. The combined annual nickel output of the world nickel sulfide smelters is some 740,000 tonnes, representing about 59% of world 2004 primary nickel production. This is in reasonable agreement with the 2003 production numbers that showed that the primary nickel output from laterite smelters corresponded to about 30%, while the output from laterite hydro plants accounted for about 12%.1

In this survey, smelter representatives were invited to review/complete technical questionnaires that were pre-filled by the authors using public information. Table I lists the plants in the survey and their respective annual nickel productions from "new metal bearing feed"

(NMBF). The nickel sulfide smelting survey results are presented in Tables II to VI that were composed by grouping the smelters as follows:

- Conventional Outokumpu Flash Smelters (Table II)
- Outokumpu DON Smelters and • Inco Flash Smelter (Table III)
- **Conventional Electric Furnace** Smelters (Table IV)
- PGM-Ni Electric Furnace Smelters, Group 1 (Table V)
- PGM-Ni Electric Furnace Smelters, Group 2 (Table VI)

GENERAL

Nickel sulfide minerals in high enough concentration for commercial exploitation are normally found in intrusive igneous rocks high in magnesium and

iron (mafic and ultramafic rocks). Pentlandite $[(Ni,Fe)_{o}S_{o}]$ is the most common of the nickel sulfide minerals. It is invariably associated with pyrrhotite, an iron sulfide with a composition varying between FeS and Fe₇S₈. Quite frequently, small amounts of nickel substitute for iron in the crystal lattice of pyrrhotite. Copper as chalcopyrite (CuFeS₂), and cobalt, gold, silver, and PGMs are other common associates of pentlandite. The most important world nickel sulfide ore deposits are found in the Canadian Sudbury district and the Russian Norilsk and Kola-Pechenga districts, while the PGM-Ni sulfide deposits are mainly found in South Africa's Bushveld Complex.² At present, South Africa is the world's largest producer of PGMs and has over 80% of the world's platinum reserves.

Technology	Country	Plant	Annual Ni Production from NMBF*
Flash Smelting	Canada	Copper Cliff	133,400
-	Brazil	Fortaleza	7,000
	Finland	Harjavalta	38,000
	Russia	Norilsk Nadezda	140,000
	China	Jinchuan	65,000
	Australia	Kalgoorlie	100,000
	Bostwana	BCL	27,400
Subtotal			510,800
Electric Furnace Smelting	Canada	Falconbridge	63,000
		Thompson	50,000
	USA	Stillwater	112
	Russia	Norilsk Ni Plant	40,000
		Pechenganickel	35,000
	South Africa	Anglo Platinum Smelters	22,000
		Impala	12,700
		Lonmin	3,700
		Northam	1,500
	Zimbabwe	Zimplats	1,600
Subtotal			229,612
Total			740,412**

In general, tonnages correspond to 2004 production.
 ** Equals 59% of world 2004 primary nickel production (1,260,000 t/y).

Table II. Conventional Flash Smelters

		Prod	ucer	
	BCL Smelter BCL Limited Selebi Phikwe, Botswana	Kalgoorlie BHP Billiton Nickel West Kalgoorlie, Australia	Jinchuan Jinchuan Group Ltd. Gansu Province, China	Nadezda Metallurgical Plant Norilsky Nickel Norilsk, Russia
Annual Ni Production from New Metal-Bearing Feed (NMBF) (t/y)	27,400 (2003, Ni+Cu 51,000)	~100,000 Mt/y Ni in matte	65,000 (2004)	140,000
Form Ni Recovery (%)	Low Fe matte 90	Low Fe matte 95.8	Low Fe matte 95	Low Fe matte 94
Feed Composition NiCuCo (%)	8.68	15–16	13.2	Ni 10.3–12.3, Cu 4.2–6.2, Co 0.3–0.4
Ni/Cu (Wt. Ratio)	1.12	50	2.04	2.2
Ni/Co (Wt. Ratio)	23.32	40	43.6	32
Fe (%)	43.03	34	38.3	36–48
S (%)	30.57	32	27.1	31.5-34.5
SiO ₂ (%)	8.97	7	6.7	1.8–2.0
Technology	0.01		0.1	1.6 2.6
Drying	2 Niro spray dryers & 1 steam dryer	Concentrate received dry	1 rotary dryer	2 Niro spray dryers
Smelting	1 Outokumpu flash furnace	1 Outokumpu flash furnace with electric furnace appendix	1 Outokumpu flash furnace with electric furnace appendix	2 Outokumpu flash furnaces
Slag Cleaning	3 Peirce Smith (PS) converters 2 electric furnaces + 1 tilting cylindrical, horizontal furnace. equipped with tuyeres	3 PS converters Flash furnace electric furnace appendix	3 PS converters Flash furnace electric furnace appendix + 2 separate electric furnace s	6 PS converters 4 circular Krupp furnaces
Drying		Concentrate received dry		
Type of Dryer and Number of Units	2 Niro spray dryers + 1 steam dryer	—	Rotary dryer	2 Niro spray dryers
Outside Dimensions (dia. \times I or dia. \times h or I \times w \times h) (m)	Niro 10 m \times 10 m high (ID) Steam 3.1 (w) \times 8.15 (I) \times 4 (h)	_		14 m \times 18 m high
Nominal Capacity—Dry t Feed/h	Niro: 55 t/h/unit; steam: 50 t/h	—	60–80	61
Feed Moisture (%)	28	—	11	50 (slurry)
Product Moisture (%)	Bone dry	_	<0.3	0.2
Fossil Fuel–Type	Pulverized coal	—	Pulverized coal	Natural gas
Average Fuel Consumption— L or kg or Nm ³ /t Dry Feed	43.64	—	16	100 Nm ³ /Dry t feed
Smelting				
Type and Number of Furnaces	1 Outokumpu flash furnace	1 Outokumpu flash furnace with electric furnace appendix	1 Outokumpu flash furnace with electric furnace appendix	2 Outokumpu flash furnaces
Furnace Outside Dimensions (Settler) $(I \times w \times h)$ (m)	$22 \times 8.2 \times 4.0$	37 m long \times 8 m wide	$32.5 \times 7.2 \times 3.4$ (includes settling pool and slag cleaning appendix)	$31.2\times10\times4.56.4$
Reaction Shaft Internal Dimensions (dia. \times h) (m)	8.5×10.73	6.9×6	6.4×6	8.0×8.91
Number of Concentrate Burners	4	4	4	1 (18 fossil fuel burners in settler)
Nominal Capacity (Dry t Solid Feed/h)	115	130–140	50 (dry t con/h)	110–150
Reaction Air + Oxygen (Nm ³ /h) O ₂ Vol. %	150,000 31	85,000 35	32,600 42	34,000 70
Fossil Fuel Type	Pulverized coal	NG for preheating air to 500°C and NG or oil in the reaction shaft (oil is RF80)	Heavy oil + coal powder	Natural gas
Fuel Consumption (L or kg or Nm ³ /t of Dry Solid Feed)	52.6	`11 L ′	25L + 16 kg	40 Nm ³
Furnace Area Availability – Operatir Days/Year	ng 356	_	330	330
Furnace Campaign Life (Years)	Previous was 9	~10	8	5
Flux SiO, (%)	82.8	75.6	92.7	78
Average Size (wt.% Below X mm)	100% below 4 mm	45% passing 75 μm	90% < 0.25 mm	99% < 2 mm
Matte (t/d)	400-700	630	360	1,300
NiCuCo (%)	32.4	~49	44.8	Ni 32; Cu 15; Co 0.8
Ni/Cu (Wt. Ratio)	1.14	30.2	1.9	2.1

Table II. Conventional Flash Smelters (cont.)

		Produc	er	
	BCL Smelter BCL Limited Selebi Phikwe, Botswana	Kalgoorlie BHP Billiton Nickel West Kalgoorlie, Australia	Jinchuan Jinchuan Group Ltd. Gansu Province, China	Nadezda Metallurgical Plant Norilsky Nickel Norilsk, Russia
Smelting (cont.)				
Fe (%)	33.0	19.8	29	23
S (%)	24.68	26.7	23	27
Matte Tapping Temperature (°C)	1,164	~1,170	1,200–1,240	1,150
Slag (t/d)	2,608	1,650	1,100	3,100
SiO ₂ (%)	28.05	33	35.6	34
Fe (%)	40	40	40.8	40
Fe ₃ O ₄ (%)	8.16	6.3	<2	7
MgO (%)	1.92	7.1	—	—
Slag Skimming Temperature (°C)	1,244	1,290–1,350	1,380	1,250
Value Metal Partitions (Matte/Slag)	(%)			
Ni	11.5	70	116	52
Cu	11.20	33	65	43
Co	2.55	4.5	7.6	4.7
Furnace Off-Gas				
Temperature (°C)	1,400	1,350–1,400	1,380 (uptake)	1,150
Volume (Nm ³ /h)	87,152	—	60,000 (ESP)	56,000
SO ₂ Dry Basis (vol. %)	7.2 tom WUR (67 hor 125 t/h	WHB and ESP	8 (acid plant) WHB and ESP	30–35 WUR and ESP
Off-Gas Cooling and Cleaning Syst	steaming rate), 2 parallel Lurgi ESPs	WHB and ESP	WHB and ESP	WHB and ESP
Dust (Sludge) Disposition Off-Gas Disposition	Recycled to flash furnace Atmosphere	Dry dust back to flash furnace Acid plant	Recycled to flash furnace Acid plant	Recycled to flash furnace Atmosphere
Converting				
Type and Number of Converters	2 PSCs (2 hot, 1 repair)	3 PS converters	3 PS converters	6 PS converters
Outside Dimensions (dia. \times I) (m)	3.96 × 9.14	3.6 × 7.3	3.6 × 8.2	4×9
No. and Dia. of Tuyeres (mm)	44 @ 38	28 @ 63.5	34 @ 48	52 @ 50
Average Blowing Rate (Nm ³ /h)	32,000	19,000	18,000-22,000	36,000
Blast Oxygen Content (vol.%)	21	21	21	21
Reverts Addition of Primary Matte ((wt.%) 25	10	25-30	_
Converting Flux (SO ₂ %)	82.8	98.7	95.4	76
Average Size (wt.% Below X mm)	100% below 4	100% passing 25	90% 30–50	100% <50
Matte Composition				
NiCuCo (%)	80.82	69	73	Ni 40–52; Cu 18–30; Co 0.2–0.3
Ni/Cu (Wt. Ratio)	1.12	37	1.93	1.9
Ni/Co (Wt. Ratio)	95.34	74	56	180
Fe (%)	1.49 16.66	4.2 24	4.2	3.4
S (%) Matte Pouring Temperature (°C)	1,250	1,280	22.4 1,250	22–23 1,200
Matte Processing Technology		Matte granulated and shipped to	Controlled cooling, milling,	Controlled cooling, milling,
inano i i i i i i i i i i i i i i i i i i i		Kwinana refinery and other overseas refineries	separation of Cu ₂ S, Ni ₃ S ₂ , metallics	flotation
Slag Composition				
SiO ₂	25.92	21	24–28	20
Fe	44.14	55	48	52
Fe ₃ O ₄	17.63	32	14–18	25
Slag Skimming Temperature (°C)	1,250	1,280	1,250–1,300	1,250
Slag Disposition	Slag cleaning vessel and slag cleaning electric furnaces	100% recycled to flash furnace	Slag cleaning furnaces	Slag cleaning furnaces
Converter Off-Gas	-			
Hood Dilution Factor	2.5	1:1 to acid plant; 2:1 to stack	2.5 to 3	3 to 4
Diluted Volume (Nm ³ /h)	80,000 one converter; 160,000 two converters in stack	41,000 to acid plant; ~60,000 to stack	50,000-60,000	140,000
SO ₂ Dry Basis (vol.%)		~4% to acid plant, ~2.7% to stack	2.5-3.5	2.5
Off-Gas Cooling and	Collection in balloon flue	Spray cooler (air and	WHB and ESP	WHB and ESP
Cleaning System	dust system	water)	— • • • • • •	
Dust (Sludge) Disposition	Captured and mixed with flash furnace flux	Recycled to flash furnace	Recycled to flash furnace	—

Table II. Conventional Flash Smelters (cont.)

		Prod	ucer	
	BCL Smelter BCL Limited Selebi Phikwe, Botswana	Kalgoorlie BHP Billiton Nickel West Kalgoorlie, Australia	Jinchuan Jinchuan Group Ltd. Gansu Province, China	Nadezda Metallurgical Plant Norilsky Nickel Norilsk, Russia
Converting (cont.)				
Off-Gas Disposition Slag Cleaning	To stack	To acid plant or stack	Acid plant	Atmosphere
Electric Furnace (No. of Furnaces) Outside Dimensions (m)	2 circular electric furnaces 8×6	Appendix to flash furnace	2 Rectangular furnaces Furnace #2 – $13.2 \times 7.6 \times 5.2$	4 Circular Krupp furnaces 14×5.6
(dia. \times h or l \times w \times h) Type and No. of Electrodes Electrode Dia. (cm)	3 Söderberg electrodes 89.2	2×3 electrodes	Furnace $#1 - 11.2 \times 4.85 \times 4.15$ 3 on-line self-baking electrodes Furnace $#2 - 90$; furnace $#1 - 82$	3 self-baking electrodes
Maximum Power Setting (MVA) Average Operating Voltage (V)	2.5 75	_	Furnace #2, 5; furnace #1 – 4 60–90	18 300
Average Electrode Current (A)	13,400	_	15,000-22,000	20,000
Outside Dimensions (m)	Converter slag cleaning vessel 6.46 × 9.172	N/A 	N/A —	N/A
(dia. \times or \times w) Number of Tuyeres and Dia. (mm)	4 @ 6.5 mm	_	_	_
Average Blowing Rate (Nm ³ /h)	3 tuyeres at 1,160/tuyere	_	_	_
Blast Oxygen Content (vol.%) Operating Data	0	_	_	_
Furnace Slag Treated (t/d)	2,600	—	490	3,100
Converter Slag Treated (t/d) Type of Value Metals Collector Added (e.g., Concentrate)	250–400 Flash furnace matte	100% recycled to flash furnace	450 —	580 Rich sulfide ore
Slag (wt.%)	2.1	_	18–24	12
Slag Residence Time (h)	2.5	_	3	4
	Graded coal (lump coal with fixed carbon at 52%	_	Lump coal	Coke (25–45 mm)
Electrical Energy Consumption (KWh/t of Slag)	41.0	—	140–160	160
Electrode Consumption (kg/t of Slag) 0	_	1.9	1.1
Value Metal Product Composition NiCuCo (%)	80.8	See flash furnace matte	23	Ni 11–20; Cu 15–27; Co 0.6–1.4
Ni/Cu wt. Ratio	1.12	_	2.8	0.7
Ni/Co wt. Ratio	95.34	_	11.3	15
Fe	1.49	—	50.3	40
S	16.7	_	24	22–24
Disposition	To custom refinery in Kristiansand in Norway and Eiffel flats in Zimbabwe	_	To converters	To converters
Discard Slag Composition (%)				
SiO ₂	30.3	See flash furnace slag	35	35
Fe	41.5	—	48	40
Fe ₃ O ₄	5.0	—		1–1.5
Ni Cu	0.36 0.40	_	0.08 0.19	0.07 0.22
Co	0.40	_	0.09	0.22
Slag Disposition H	laulage by trucks to slag dump	_	Mine filling	Water granulation; to dump
Furnace Off-Gas Disposition	Atmosphere	See flash furnace off-gas disposition	Atmosphere	Atmosphere after dust recovery
Value Metals Recovery		alapoonton		recovery
(% of Ni, Cu, Co in NMBF Reporting to Smelter Product Matte)				
Ni	90.0	95.8	95	94
Cu	90.0 86.2	95.8 80	93	94 90
Co	25.8	—	54	69
Annual Sulfuric Acid Production (Mt) —	500,000	350,000	_
Smelter Oxygen Consumption	—	~2	3	_
(t/t of Ni Recovered from NMBR)				

Table III. Outokumpu DON Smelters and Inco Flash Smelter

		Producers	
	DON Fla	sh Smelters	Inco Oxygen Flash Smelter
	Harjavalta Boliden Harjavalta Oy (Smelter) Harjavalta, Finland	Fortaleza de Minas Votorantim Metais Brazil	Copper Cliff CVRD Inco Sudbury, Ontario, Canada
Annual Ni Production from NMBF (t/y)	38,000	7,000	133,400
form	Low Fe matte	Low Fe matte	Low Fe (Bessemer) matte
li Recovery (%)			
eed Composition			
NiCuCo (%)	15.5	8.1	21.5 (18–26)
Ni/Cu wt. Ratio	19	7	0.84
Ni/Co wt. Ratio	39	70	~30
Fe (%)	30	30	39.0
S (%)	29	21	33.5
echnology			
Drying	Rotary dryer	Multicoil dryer	2 Fluid bed dryers
Smelting	Outokumpu flash furnace	Outokumpu flash furnace	2 Inco oxygen flash furnaces
Converting	N/A	N/A	PS converters
Slag Cleaning	Electric furnace	Electric furnace	N/A
rying			
/pe of Dryer and Number of Units	1 Rotary dryer	Multicoil 2/7–42	2 Fluid bed dryers
utside Dimensions (dia. $\times 1$ or	2.54×24	7.8×2.2	5.27 × 10.1
dia. \times h or l \times w \times h) (m)			
ominal Capacity (t/h Dry Feed)	60	24	100–124
eed Moisture (%)	7	14.6	11.3
roduct Moisture (%)	0.2	0.36	0.2
ossil Fuel Type	Heavy oil	0.50	Natural gas (back up light oil
verage Fuel Consumption	11.5 kg	—	14–17 Nm ³ /t
(L or kg or Nm ³ /t Dry Feed)	11.5 kg	—	14-17 Nill7(
melting			
	1 Outokumpu floch furness	1 Outokumpu flash furnasa	O Inco floob furnesse
vpe and Number of Furnaces urnace Outside Dimensions (Settler)	1 Outokumpu flash furnace $19.5 \times 7.02 \times 2.655$	1 Outokumpu flash furnace $15 \times 4.6 \times 1.9$	2 Inco flash furnaces $30.51 \times 8.23 \times 6.9$
$(l \times w \times h)$ (m)			
eaction Shaft Internal Dimensions	4.6 imes 7.6	2.8×5	N/A
$(dia. \times h) (m)$			
umber of Concentrate Burners	1	1 (5 oil burners)	4
ominal Capacity (Dry Solid Feed t/h)	45	20	100–125
eaction Air + Oxygen (Nm3/h)	7,380	300 Nm ³ /t	12,200-15,200
O ₂ (vol.%)	60–90	90	96
ossil Fuel (Type)	Heavy oil	Fuel oil	Natural gas on supplementa
	riouty of		heat burners; coke with feed
uel Consumption (L or kg or	23.5	28.82	2 natural gas, 3 Nm ³ , and
Nm ³ /t Dry Solid Feed)			coke ~12 kg/t
			of dry solid charge
urnace Area Availability	330	93.8% (mechanical, electrical, and	~84% based on 365 d/y
(Operating Days/Year)	000	instrumentation availability)	
urnace Campaign Life (Years)	10	1.5	2–3
$lux SiO_2(\%)$	90	93.9	95
verage Size (wt.% Below X mm)	90% <1 mm	80% <0.45 mm	99%–2.38 mm, 97%–600 μm 100% + 53 μm
latte (t/d)	110	40	•
	116	42	1,535
NiCuCo (%)	70	63	47.5
Ni/Cu wt. Ratio	13	5.50	0.91
Ni/Co wt. Ratio	93	70	34.6
Fe (%)	4.8	7	24.4
S (%)	22	23	25.9
atte Tapping Temperature (°C)	1,360	1,150–1,200	1,210
· · · ·	Matte is granulated and	Matte is granulated and	
	treated hydrometallurgically	shipped for treatment abroad	
lag (t/d)	530	258	2,910
MgO (%)	7	9	1
Slag (t/d) SiO ₂ (%) Fe (%) Fe ₃ O ₄ (%) MgO (%)	29 38 16	258 32 30 21 9	36.4 43 12

Table III. Outokumpu DON Smelters and Inco Flash Smelter

	DON Flash Sme	elters	Inco Oxygen Flash Smelter
	Harjavalta Boliden Harjavalta Oy (Smelter) Harjavalta, Finland	Fortaleza de Minas Votorantim Metais Brazil	Copper Cliff CVRD Inco Sudbury, Ontario, Canada
Smelting (cont.)			
Slag Skimming Temperature (°C) Slag Disposition /alue Metal Partitions	1,400 Laundered to electric furnace	1,400	1,280
(Ni%)Matte/(Ni%)Slag (Cu%)Matte/(Cu%)Slag	14.9 16.9	19.3 23	50 53
(Co%)Matte/(Co%)Slag	1.3	1.4	3.2
Furnace Off-Gas Temperature (°C)	1,400	1,300	1,300–1,400
Volume (Nm ³ /h)	16,000	13,100	24,000-28,000
SO, (vol.%) (Dry Basis)	30	26	~55 dry basis
Off-Gas Cooling and	WHB + ESP	_	Quencher, Dynawave scrubbing
Cleaning System			Wet ESPs
Oust (Sludge) Disposition	Recycled to FFce	Recycled to FFce	Neutralized sludge sent back to front end of furnace
Off-Gas Disposition	Acid plant	Acid plant	To liquid SO ₂ plant and to acid plant
Converting	N/A	N/A	_
Type and Number of Converters Dutside Dimensions (dia. \times I) (m)			5 PS converters Three 3.96×13.7 ; two 3.96×10.7
Number of Tuyeres (dia.) (mm)	—	—	(13.7)–51; (10.7)–42
Average Blowing Rate (Nm ³ /h)	—	—	~35,000
Blast Oxygen Content (vol.%)	—	—	24–27
Reverts Addition (wt.% Primary Matte)	—	_	—
Converting Flux (SiO ₂) (%) werage Size (wt.% Below X mm)	_	_	~96 -1 1/2 + 3/8 inch
Matte Composition			
NiCuCo (%)	—	—	77.3
Ni/Cu (Wt. Ratio)	—	—	0.82
Ni/Co (Wt. Ratio)	—	—	78.9
Fe (%)	—	—	0.52
S (%)	—	_	21–22
Aatte Pouring Temperature (°C) Aatte Processing Technology		_	1,020 Separation of controlled cooled and comminuted matte to yield NiCuCo metalics, Ni sulfides, and Cu sulfides
Slag Composition			
SiO ₂ (%) Fe (%)		_	26 51
Fe (%) Fe ₂ O ₄ (%)		_	23
Fe ₃ O ₄ (%) Blag Skimming Temperature (°C)		_	1,225
Slag Disposition	_	_	To flash furnace
Converter Off-Gas			io hash furnace
Hood Dilution Factor	_	_	~3–4
Diluted Volume (Nm ³ /h)	_	_	~140,000
SO, (vol. %) (Dry Basis)	_	_	3-5% SO, during regular blow
Off-Gas Cooling and Cleaning System	_	_	ÉSPs
Dust (Sludge) Disposition Off-Gas Disposition	_	_	Dry dust back to flash furnace: To stack
Blag Cleaning			
		_	_
Electric Furnace (Number)	1	07~00	
Litectric Furnace (Number) Dutside Dimensions (dia \times h or l \times w \times h) (m)	9.256 imes 5.420	8.7×5.2	_
Electric Furnace (Number) Dutside Dimensions (dia \times h or l \times w \times h) (m) Type and Number of Electrodes	9.256×5.420 3 Söderberg electrodes	3	_
Electric Furnace (Number) Dutside Dimensions (dia \times h or l \times w \times h) (m) Type and Number of Electrodes Electrode Diameter (cm)	9.256×5.420 3 Söderberg electrodes 1,260	3 91	
Electric Furnace (Number) Dutside Dimensions (dia \times h or l \times w \times h) (m) Type and Number of Electrodes Electrode Diameter (cm) Maximum Power Setting (MVA) Average Operating Voltage (V)	9.256×5.420 3 Söderberg electrodes	3	

		Producers		
	DON Flash Sm	elters	Inco Oxygen Flash Smelter	
	Harjavalta Boliden Harjavalta Oy (Smelter) Harjavalta, Finland	Fortaleza de Minas Votorantim Metais Brazil	Ćopper Cliff CVRD Inco Sudbury, Ontario, Canada	
Operating Data				
Furnace Slag Treated (t/d)	530	258	—	
Converter Slag Treated (t/d)	N/A	N/A	_	
Type of Value Metals Collector Added (e.g., Concentrate)	Concentrate	—	—	
Slag (wt.%)	2.0	—	—	
Slag Residence Time (h)	2	2–3	—	
Type of Reductant Added	Coke	Coke	—	
Reductant Consumption (kg/t of Slag)	30	35	—	
Electrical Energy Consumption (KWh/t of Slag)	172	230	—	
Electrode Consumption (kg/t of Slag)	0.8	3.65	_	
Value Metal Product Composition				
NiCuCo (%)	57.5	55	_	
Ni/Cu (Wt. Ratio)	16	6.8	_	
Ni/Co (Wt. Ratio)	12	70	_	
Fe (%)	34.2	36	_	
S (%)	6.9	24	_	
Disposition	Matte is granulated and treated hydrometallurgically	Matte is granulated and shipped for treatment abroad	_	
Discard Slag Composition				
SiO ₂ (%)	35	33	_	
Fe (%)	39	30	_	
Fe ₃ O ₄ (%)	2	5	_	
Ni (%)	0.11	0.15	_	
Cu (%)	0.06	0.2	_	
Co (%)	0.18	0.04	_	
Slag Disposition	Granulated and discarded	Discarded	_	
Furnace Off-Gas Disposition	Baghouse and stack	_	_	
Value Metals Recovery	J. J			
(% of Ni, Cu, Co in NMBF Reporting				
to Smelter Produce Matte)				
, Ni	_	_	97	
Cu	_	_	97	
Co	—	_	46-48	
Annual Sulfuric Acid Production (Mt)	150,000 (plus 12,000 t of liquid SO ₂)	60,000	600,000–650,000 (plus 45,000– 55,000 t of liquid SO ₂)	
Smelter Oxygen Consumption	_	5.9	3.8	
(t/t of Ni Recovered from NMBF)				

Table IV. Electric Furnace Smelters—Conventional Nickel Producers

	Producer					
	Sudbury Smelter Xstrata Nickel Sudbury, ON, Canada	Thompson CVRD Inco Manitoba, Canada	Norilsk	l Plant y Nickel , Russia	Pechenga Norilsky I Pechenga,	Nickel
Annual Ni Production from NMBF (Mt/y) Form Ni Recovery (%)	63,000 Low-Fe NiCu matte	50,000 Low-Fe NiCu matte	-,	000 IiCu matte	35,00 Low-Fe NiC	
Feed Composition			Roasted agglomerate	Ore	Roasted granules (10 parts)	Ore (1 part)
NiCuCo (%)	17	14.4	5.0; 2.5; 0.2	0.3; 0.38; 0.14	9.3; 4.1; 0.31	2.1; 1.05; 0.05
Ni/Cu (Wt. Ratio)	2.94	53	2	0.08	2.26 (Co	ombined)
Ni/Co (Wt. Ratio)	23.5	44	25	2.1	30.2 (Co	ombined)
Fe (%)	31	36.5	40	45	31.7	21.6

Table IV. Electric Furnace Smelters—Conventional Nickel Producers (cont.)

	Producer				
	Sudbury Smelter Xstrata Nickel Sudbury, ON, Canada	Thompson CVRD Inco Manitoba, Canada	Nickel Plant Norilsky Nickel Norilsk, Russia	Pechenganickel Norilsky Nickel Pechenga, Russia	
S (%) MgO (%)	28 4	29.2 2.9	12 1.2 3 8.5	16.3 9.6 10.4 13.6	
Technology Roasting Smelting Converting Slag Cleaning	2 fluid bed roasters 1 rectangular furnace 3 PS converters 1 horizontal, cylindrical, tilting furnace	2 fluid bed roasters 2 rectangular furnaces 5 PS converters N/A	7 traveling grates (AKM5-75) 3 rectangular furnaces 4 PS converters 1 rectangular electric furnace	2 traveling grates 2 rectangular furnaces 5 PS converters N/A	
Roasting					
Type of Roaster and No. of Units Inside Dimensions (Each Type) (dia.× h or $l × w × h$) (m)	2 fluid bed roasters 5.6 m dia. bed, 8 m dia. freeboard	2 fluid bed roasters 5.5 m dia. bed, 6.4 m dia. freeboard, 6.5 m high abode grate	7 traveling grates (AKM5-75) $45 \times 2.8 \times 0.3$	2 traveling grates $36 \times 2 \times 0.35$,	
Nominal Capacity (Dry Solid Feed) (Mt Feed Moisture (%) or Slurry Feed Solids (%)	/h) — 70% solids slurry	55 10	220–250 (total) —	30 (concentrate + dust + pellets) 9 to 12	
Bed Temperature (°C) Concentrate Sulfur Elimination (%) Calcine Discharge Temperature (°C) Off-Gas Volume (Nm ³ /h) SO ₂ (Dry Basis) (Vol.%)	760 70 760 40,000 11 to 13	600 40 580 48,000 at 530°C 25	700–900 40 100 280,000 (total) 1 to 2	1,100–1,250 40–45 150–200 46,000 2.2	
Off-Gas Handling System Off-Gas Disposition	Cyclones-gas cooling-ESPs Acid plant	Cyclones to balloon flue to ESP to stack Stack	— Stack	— Stack	
·	Acia plant	Slack	Slack	JIdok	
$\label{eq:smelling} \hline \\ \hline $	1 rectangular six-in-line $30 \times 9 \times 2.7$ (inside)	2 rectangular six-in-line $31.7 \times 10.7 \times 6.4$	3 rectangular six-in-line $27.2 \times 9.5 \times 4.8$	2 rectangular six-in-line $27.5 \times 11.2 \times 6.6$	
Furnace Wall Cooling System		#2 coolers around skimming and tapping; #1 same + sidewall coolers	Water-cooled copper elements		
Maximum Power Setting (MVA)	60	30	45	45	
Average Operating Power (MW) Average Power Density (kW/m ²)	40 130	16 62	_	_	
Average Operating Voltage (V)	1,050	320	500	400-550	
Secondary Current (kA) Nominal Capacity (Dry Solid Feed) (t/h	38 /Furnace) 80	17 65	50 70–75	36 50	
Type of Reductant Added	Coke	—	_		
Reductant Consumption (kg/t Dry Solid Feed) Average Electrical Energy Consumptio	4% on concentrate	 470			
(kWh/t of Dry Solid Feed)					
Electrode Consumption (kg/t of Dry So Matte Temperature (°C) Matte Composition	lid Feed) — 1,250–1,275	3.5 1,190	2 to 3 1,200	1.1 1,250	
NiCuCo (%)	48	32.2	12–14; 7–8; 0.6–0.8	25.9	
Ni/Cu (wt. Ratio) NiCo (wt. Ratio)	3.1 32.2	26 32	1.75 18.5	2 25	
Fe (%)	33	37	52-54	40.3	
S (%) Slag Temperature (°C) Slag Composition	17 1,300–1,320	27 1,310	22–24 1,300	23.3 1,350	
SiO ₂ (%) Fe (%)	35 35	35 37	35.2–38.9 31.8–34.3	37.2 25.3	
Fe_3O_4 (%)		10	1–3	20.0	
MgO [*] (%)	4– 6	2.7 100	2-3	12.5	
Partition Coefficient (Ni) Partition Coefficient (Co)	_	5	185 11.7	105 11	
Furnace Off-Gas SO ₂ (Dry Basis) (Vol. Furnace Off-Gas Disposition	%) 1 Stack	3.3 Stack	0.07 Stack	<0.3 Stack	
Converting					
Type and Number of Converters Outside Dimensions	3 PS converters 1 slag-making converter: 4 m dia. 15 m long; 2 finishing	5 PS converters 4 m dia,, 10.7 m long	4 PS converters 4 m dia., 9 m long	5 PS converters 4 m dia., 12 m long	
Number of Tuyeres and Dia. (mm)	converters: 4 m dia., 9 m long Slag-making converter: 6, 32 mm OD shrouded injectors finishing converter: 42, 50 mm	30–42; 51 mm ;	52; 50 mm	52; 50 mm	

Table IV. Electric Furnace Smelters—Conventional Nickel Producers (cont.)

		F	Producer	
	Sudbury Smelter Xstrata Nickel Sudbury, ON, Canada	Thompson CVRD Inco Manitoba, Canada	Nickel Plant Norilsky Nickel Norilsk, Russia	Pechenganickel Norilsky Nickel Pechenga, Russia
Converting (cont.)				
Average Blowing Rate (Nm ³ /h) Blast O ₂ (Vol.%) Product Matte Composition	6,450 and 30,000 respectively 33–43 and 21 respectively Finishing converter	21	36,000 21 	36,000 21
NiCuCo (%) Ni/Cu (Wt. Ratio) Ni/Co (Wt. Ratio) Fe (%)	75.5 3.1 30 2–2.5	80 26 109 0.6	67.8 1.1 46 3.2	72.6 1.6 55 3
S (%) Matte Processing Technology	21 Granulated and shipped to Xstrata's Norway Refinery	18.7 Cast as anodes; electrorefining	22.9 Cast, slow cooling, milling, Cu/Ni separation by flotation	24.3 Slow cooling; ingots to customer
Slag Composition SiO ₂ (%)	Slag making converter 21	 26	 18	 20
Fe (%) Slag Disposition	48 To slag cleaning vessel	50 Recycled to electric furnace	55 To slag cleaning electric furnace	45 Recycled to electric furnace
Converter Off-Gas Diluted Volume (Nm ³ /h)	_	75,000	140,000	180,000
Converter Diluted Off-Gas SO ₂ (Dry Basis) (vol.%)	—	3.6	1–2.5	2.5
Off-Gas Disposition	Off-gases from slag-cleaning vessel, slag-making converter, a finish converter to stack	Stack Ind	Stack	To acid plant
Slag Cleaning		Not applicable		Not applicable
Electric Furnace (# of units)	—	—	1 rectangular furnace with 3 self-baking electrodes	_
Outside Dimensions $(I \times w \times h)$ (m) Maximum Power Setting (MVA)	_	_	19.1 × 9.7 × 5.7 25	—
Average Operating Voltage (V)	_	_	380	—
Secondary Current (kA)	<u> </u>	_	30	_
Other Furnace (Type and Number of Units) Operating Data	Rotary, horizontal, tilting furnace	—	Not applicable	_
Converter Slag Treated (Mt/d)	-	—	800	—
Solid Reverts Addition (wt.% of Slag) Type of Value Metals Collector Added	_	_	 Ore	_
(e.g., Concentrate)	_	_		_
Slag (wt.%) Slag Residence Time (h)	_	_	8 2	_
Type of Reductant Added	Ferrosilicon	_	Coal	_
Reductant Consumption (kg/t of Slag) Electrical Energy Consumption)	_	50 295	
(kWh/t of slag) Value Metal Product Composition				
NiCuCo (%)	_	_	18	_
Ni/Cu (Wt. Ratio) Ni/Co (Wt. Ratio)	_	_	1.27 7.8	_
Fe (%)	_	_	55	_
S (%)	—	—	23.4	—
Disposition Discard Slag Composition	Slag making converter	—	To converters	—
SiO ₂ (%)	_	_	34	—
Fe (%) Fe ₃ O ₄ (%)	_	_	41 1.5–2	_
Ni (%)	_	_	0.06	—
Cu (%)	—	_	0.2	—
Co (%) Slag Disposition	 Discarded	_	0.08 To dump	_
Furnace Off-Gas Disposition	Stack	—	Stack	—
Value Metals Recovery (Ni, Cu, Co in NMBF Reporting to	_	_	_	_
Smelter Product Matte) (%)		00	07.0	07
Ni Cu		98 97	97.9 96.8	97 96.4
Co	—	51	65.7	74.8
Annual Sulfuric Acid Production (M	1t) 320,000	Not applicable	Not applicable	64,000

Table V. Electric Furnace Smelters—PGM Producers A

	Producer					
	Union-Mortimer Anglo Platinum Limited South Africa	Waterval Anglo Platinum Limited South Africa	Polokwane South Africa	Impala Impala Platinum South Africa		
Annual Ni Production from NMBF (t/y)	2,500	22,000 (includes Union and Polokwane)	6,000	12,700		
Form	Electric furnace matte converted at Waterval	Low-Fe Ni matte	Electric furnace matte converted at Waterval	Low-Fe Ni matte		
Ni Recovery (%)		_	_	_		
Feed Composition		5 70	0.5.4	0.07		
NiCuCo (%)	3.34	5.78 1.7	2.5–4 1.6–1.9	2.87 1.59		
NiCu (Wt. Ratio) Ni/Co (Wt. Ratio)	2 55	45	40–60	35.3		
Fe (%)	11.7	15.6	10-13.5	12.3		
S (%)	5	9	3–6	4.5		
MgO´(%)	20	15	16–20	18.12		
Technology						
Drying	1 Flash dryer	2 Flash dryers	2 Flash dryers	4 Niro spray dryers		
Smelting	1 rectangular furnace	2 rectangular furnaces	1 rectangular furnace	2 rectangular furnaces		
Converting Slag Cleaning	Not applicable —	2 Ausmelt converters 1 round electric furnace	Not applicable —	6 PS converters Converter slag milling and flotation		
Drying						
Type of Dryer and Number of Units Nominal Capacity (Dry t Feed/h/Dry	1 Flash dryer er) —	3 Flash dryers 2×35 @ 18% moisture; 1×57.8 @ 22% moisture	2 Flash dryers 78.5@ 10% moisture	4 Niro spray dryers 25, 25, 45, 60, respectively		
Feed Moisture (%)	12 to 22	12 to 22	10 to 16	42.7		
Product Moisture (%)	<0.5	<0.5	<0.5	<1		
Fossil Fuel (Type)	Coal	Coal	Coal	Coal		
Average Fuel Consumption (L or kg Nm ³ /h/Dry t Feed)	or —	_	—	128.31		
Smelting						
Number of Furnaces Furnace Outside Dimensions (dia. \times h or l \times w \times h) (m)	1 rectangular six-in-line 25.3 m long, 7 m wide	2 rectangular six-in-line 25.8 m long, 8 m wide	1 rectangular six-in-line 28.7 m long, 9.6 m wide	2 rectangular six-in-line 25.9 m long, 8.2 m wide		
Furnace Wall Cooling System	Water-cooled copper plates	Water-cooled copper plates	Copper waffle coolers and plates	Water-cooled copper plates		
Maximum Power Setting (MVA)	19.5	39		_		
Average Operating Power (MW)	19	32–34	68 (max. 80)	#3 38, #5 35		
Average Power Density (kW/m ²)	110	160	250	180		
Average Operating Voltage (V)	_	300-340	300-800	500		
Secondary Current (kA)		25–29	40–75	26.8		
Nominal Capacity (Dry Solid Feed) (t/h/furnace)	23 t/h, max. 35 t/h	40 t/h, max. 50 t/h	82.5 t/h, max 106 t/h	54 t/h		
Type of Reductant Added	Nil	Nil	Nil	N/A		
Average Electrical Energy	820-850	750-850	750–850	680		
Consumption-(kWh/t of Feed)						
Electrode Consumption-(kg/t of Fee	ed) —	2	3	1.5-2.0		
Matte Temperature (°C)	1,550	1,350–1,450	1,400–1,500	1,260		
Matte Composition				aa /		
NiCuCo (%)	19.3	26.5	22.3	23.4		
Ni/Cu (Wt. Ratio)	1.71	1.89	1.75	1.6		
Ni/Co (Wt. Ratio) Fe (%)	40 37	34 41	47 40	44.4 44.5		
S (%)	25	27	40 30	29.8		
Slag Temperature (°C)	1,650	1,500–1,550	1,600–1,750	1,460		
Slag Composition		. ,	- *	,		
SiO ₂ (%)	41	46	45–50	46.8		
Fe (%)	15.6	24.1	8	11.4 (FeO)		
Fe ₃ O ₄ (%)	—	-	—	—		
MgO (%)	13	15	20	21.1		
Partition Coefficient (Ni)	75	89.5	100	98		
Partition Coefficient (Co) Furnace Off-Gas SO ₂	 0.5–1.0	10 0.5–1.3 (combined 2	15 0.5–1.0	60 0.9		
(Dry Basis) (Vol.%)	0.0-1.0	furnaces)	0.5-1.0	0.9		

Table V. Electric Furnace Smelters—PGM Producers A (cont.)

		Producer		
A	Union-Mortimer nglo Platinum Limited South Africa	Waterval Anglo Platinum Limited South Africa	Polokwane South Africa	Impala Impala Platinum South Africa
Smelting				
Furnace Off-Gas Disposition	Stack	To nitrification-type "tower plant." Weak acid produced blended with strong acid from converter gas	Stack	ESP followed by Sulphacid™ technology
Converting				
Number and Type	_	2 Ausmelt converters	_	6 PS converters
Outside Dimensions (m)	_	4.5 m inner dia., 4 m high	_	2 @ 3.6 m × 7.3 m; 4 @ 3 m × 4.5 m
Number of Tuyeres and Dia. (mm)	_	—	—	26 (small); 32 (large); 51 mm
Lance Outer Tube Dia. (cm)	—	45	—	—
Average Blowing Rate (Nm ³ /h)	—	25,000 max (including all air)	—	11,000 and 22,000
Blast O ₂ (Vol.%)	—	Up to 40% enrichment	—	Air, no addition
Product Matte Composition		70 5		70.0
NiCuCo (%)		73.5	—	78.0
Ni/Cu (Wt. Ratio)	_	1.81	_	1.6
Ni/Co (Wt. Ratio)	_	94	_	160
Fe (%) S (%)	_	2.9 21.7	—	0.6 20.3
Slag Composition	—	21.7	_	20.5
SiO ₂ (%)	_	24–28	_	27
Fe (%)	_	42-48	_	64.45 (FeO)
Slag Disposition	_	Granulated to slag cleaning furnace	_	Granulated to milling/flotation
Converter Diluted Off-Gas SO ₂ (Dry Basis) (vol.%)	-	12 to 16	—	3–8% (no dilution)
Off-Gas Disposition	—	To acid plant	_	Single contact acid plant
Slag Cleaning	_	_	_	Milling/flotation of converted slag
Electric Furnace (Number of Units)	_	1 round furnace (3 Söderberg electrodes)	_	—
Outside Dimensions (dia.) (m)	—	12	—	_
Maximum Power Setting (MVA)	_	30	_	_
Average Operating Voltage (V)	—	200–800	—	—
Secondary Current (kA)	—	45–60	—	—
Operating Data				
Converter Slag Treated (Mt/d)	—	About 450	—	_
Solid Reverts Addition–Slag (wt.%)	_		—	—
Type of Value Metals Collector Added (e.g., Concentrate)	—	Concentrate	—	—
Slag (wt.%)	_	About 40%	_	_
Slag Residence Time (h)	_		_	_
Type of Reductant Added	_		_	_
Reductant Consumption—(kg/t of slag)) —	_	_	_
Electrical Energy Consumption—(kWh		About 600	_	_
Slag Disposition			_	_
Furnace Off-gas Disposition	—	_	—	_
Value Metals Recovery				
(in NMBF Reporting				
to Smelter Product Matte) (%)	00	22	04	20
Ni	90	93	94	92
Cu	89 20	89 35	91 35	90
Co	30	35	35	30
Annual Sulfuric Acid Production (Mt) —	Max. 920 t/d Current average 400 t/d	_	50,000

Table VI. Electric Furnace Smelters—PGM Producers B

		Produ	JCer	
	Lonmin Lonmin Platinum Marikana	Northam Northam Platinum Northam, South Africa	Zimplats Zimplats Selous, Zimbabwe	Stillwater Stillwater Mining Company Montana, USA
Annual Ni Production from NMBF (t/y) Feed Composition) 3,700	1,500	1,600	112
NiCuCo (%)	4.1	3.85	3.55	8–9
Ni/Cu (Wt. Ratio)	1.7	1.92	1.39	1.5–1.8
Ni/Co (Wt. Ratio)	20	50	30	—
Fe (%)	17.1	13.2	13.2	14–16
S (%)	5.5	5.4	5.9	11–14
MgO (%)	16.7	18	24	10–14
Technology	10.1	10	_ .	
	1 Flack dwyar	1 Floob dry or	1 Flack dry or	1 fluid bod dwyrr
Drying	1 Flash dryer	1 Flash dryer	1 Flash dryer	1 fluid bed dryer
Smelting	4 round electric furnaces	1 rectangular electric furnace	1 round electric furnace	1 rectangular electric furnace
Converting	3 PS converters	2 PS converters	2 PS converters	2 top-blown rotary converters (TBRCs)
Slag Cleaning	Flotation (converter slag)	_	_	
Drying				
Type of Dryer and Number of Units	1 Flash dryer	1 Flash dryer	1 Flash dryer	1 fluid bed dryer
Outside Dimensions (Each Type) (dia		Approx. 2×2 (inner dia.)		4.3 m dia., 9.0 m high
· · · · ·	. —	$Approx. \ 2 \ \land 2 \ (\text{Interval} \ \text{und}.)$	—	4.5 m uia., 9.0 m myn
\times l or dia. \times h or l \times w \times h) (m)	\			
Nominal Capacity (Dry t Feed/h/Dryer	r) 30	18	25	6.5
Feed Moisture (%)	12–15	20	17.5	10
Product Moisture (%)	<0.5	Bone dry	<0.5	<0.1
Fossil Fuel Type	Coal	Pea coal	Coal	Natural gas
				Natural gas
Average Fuel Consumption (L or kg o Nm ³ /t of Dry Feed)	r —	50	78 kg	—
Smelting				
Number of Furnaces	4 Round three-electrode	1 Rectangular six-in-line	1 Round three-electrode	1 Rectangular three-in-line
	furnaces	furnace	furnace	with circular endwalls
Furnace Outside Dimensions	1 @ 11.8 m dia;	$25.9 \times 8.7 \times 5.6$	12 m dia.	$7.5 \times 2.6 \times 2.1$
$(dia. \times h \text{ or } I \times w \times h) (m)$	3 @ 6.2 m dia.	5	a.a.	
			Connex plate coolers	Motor cooled conner
Furnace Wall Cooling System	Copper waffle coolers; water-cooled shell	No coolers	Copper plate coolers	Water-cooled copper plates
Maximum Power Setting (MVA)	28 and 5, respectively	_	13.5	5 MW
Average Operating Power (MW)	20 and 4.2, respectively	15	12.5	1.4 (1.2–1.6)
Average Power Density (kW/m ²)	225 and 198, respectively	90	131	140
Average Operating Voltage (V)	300 and 150, respectively	200	125	160-200
Secondary Current (kA)	62 and 19, respectively	18	—	4–5
Nominal Capacity–Dry Solid Feed (t/h/Furnace)	26 and 5, respectively	10–12	13.8	1.1–1.5
Type of Reductant Added	Nil	_	Nil	Coke
Reductant Consumption-(kg/t of				3.5
	_	—	_	3.3
Dry Solid Feed)				
Average Electrical Energy	700 and 900, respectively	1,044 kWh/t of conc.	850–950	900
Consumption-(kWh/t of				
Dry Solid Feed)				
Electrode Consumption- (kg/t	2.6 (large furnace)	2.6	3.1	3.5
of Dry Solid Feed)				
Matte Temperature (°C)	1,500–1,580	1,385	1,330–1,450	1,200–1,300; matte is granulated for feeding TBRC
Matte Composition				5 5 5
NiCuCo (%)	25	24.3	25.3	26–30
Ni/Cu (Wt. Ratio)	1.67	2.03	1.59	1.5–1.8
Ni/Co (Wt. Ratio)	32	40	20.7	_
Fe (%)	43	41	40–46	40–45
S (%)	28	27	25-30	26-28
		<i>∠1</i>		
Slag Temperature (°C)	1,600–1,650	—	1,580	1,400–1,550
Slag Composition				
	45	44	53.8	42–48
SiO ₂ (%)	45	44		42-40

Table VI. Electric Furnace Smelters—PGM Producers B (cont.)

		Produ	icer	
	Lonmin Lonmin Platinum Marikana	Northam Northam Platinum Northam, South Africa	Zimplats Zimplats Selous, Zimbabwe	Stillwater Stillwater Mining Company Montana, USA
melting (cont.)				
Fe (%)	21.8	16.3	18.4% FeO	10
Fe ₃ O ₄ (%)	_	_	_	_
MgO (%)	19.5	20	22.1	12–16
Partition Coefficient–Ni	53	80	229	100
Partition Coefficient–Co	12	13.3	16	—
Furnace Off-Gas SO ₂ (Dry Basis) (—	0.1	4
Furnace Off-Gas Disposition	ESP; dual alkali S fixation	Stack	Stack	Passes through baghouse and SO ₂ scrubber; stack
Converting				
Type and Number of Converters	3 PS converters	2 PS converters	2 PS converters	2 TBRCs
Outside Dimensions (m)	3 dia, 4.6 l	3 dia., 6.1 l	3 dia., 4.6 l	0.80 dia., 1.5 m deep (ID)
Number of Tuyeres and Dia. (mm)	20–65 mm	22	18–50 mm	_
ance Outer Tube Dia. (cm)	_	_	_	_
Average Blowing Rate (Nm ³ /h)	11,000	_	8,500	2,600
Blast O ₂ (vol.%)	Plain air	Plain air	Plain air	92-94% (tonnage oxygen)
Product Matte Composition				
NiCuCo (%)	77.6	78.5	79.1	75
Ni/Cu (Wt. Ratio)	1.7	1.9	1.4 114 0.6	About 1.3
Ni/Co (Wt. Ratio)	80	102		About 2
Fe (%)	1.4	1.0		
S (%)	20	19	17.5	20
Matte Processing Technology	Granulation followed by hydrometallurgical treatment	_	Granulated and shipped to Impala for refining	Granulated and shipped to Stillwater Base Metals Refinery
Slag Composition			07 F	
SiO ₂ (%)	29	27	27.5	5–7 (Lime ferrite slag with 20–25% CaO)
Fe (%)	62 as FeO	49.8	51.3	45–50
Slag Disposition	Granulated; to flotation	Recycled to electric furnace	Recycled molten to electric furnace	Granulated and recycled to electric furnace
Converter Off-Gas Diluted Volume (Nm ³ /h)	—	—	—	—
Converter Diluted Off-Gas SO ₂ (Dry Basis) (vol.%)	_	_	0.4	65
Off-gas Disposition	ESP; dual alkali S fixation	Stack	Stack	Passes through baghouse and SO ₂ scrubber – stack
Slag Cleaning				
	Flotation of converter slag; concentrate recycled to furnace	_	Not applicable	Not applicable
Value Metals Recovery				
(in NMBF Reporting				
to Smelter Product Matte) (%)				
Ni	_	99	95.3	_
Cu	_	99	95.8	_
Co	—	—	31.8	—
Annual Sulfuric Acid Production	(Mt) Not applicable (96% of process	Not applicable	Not applicable	99.5% captured and disposed as gypsum)
	LEID /A UL DI DI DEBSS			UISUUSEU AS UVUSUIUU

However, Norilsk is the world's largest single producer of palladium, and also an important producer of other PGMs.

Nickel sulfide minerals are amenable to concentration by milling and flotation, with rejection of a high proportion of ore rock and pyrrhotite prior to smelting. In fact, substantial pyrrhotite rejection from the ore is practiced to reduce SO₂ emissions from nickel sulfide smelters. However, increased nickel losses have demonstrated the limitations of this technique. In some operations, flotation circuits are designed to produce separate copper and nickel concentrates. The broad range of compositions of nickel concentrates in this survey (Tables II-VI) is a reflection of the chemical and mineralogical variability of ores and also of differences in milling-flotation practices.

Although the proportion of world primary nickel production from sulfide deposits has always been substantially higher than from laterites, the latter is increasing at a faster rate. It is expected that by 2012 half of the primary nickel will be produced from laterites.³ At present, it is estimated that lateritic ores account for 72% and sulfide ores for 28% of world's land-based nickel reserves.

TECHNOLOGY

The output of flash smelters accounts for nearly 70% of the primary metal produced from nickel sulfide sources (see Table I). Electric furnace smelters produce the balance. The key merits of flash smelting are very low electrical and fossil fuel energy consumption and generation of a continuous, low-volume, SO₂-rich process gas stream amenable to processing in an acid plant. It should be noted, however, that fluid bed roasting as practiced in some electric furnace smelters also produces a gas well suited for acid production. The ensuing discussion shows that there is hardly a standard flowsheet for either technology. Factors such as feed Ni/Cu and Ni/Co wt. ratio, concentrate PGM content, MgO content of the gangue, and recycling of nickeland cobalt-rich external reverts influence smelting flowsheet design. Nevertheless, in nickel sulfide smelting the final product always consists of low iron matte, also referred to as Bessemer Matte (BM). The desired iron content of BM, generally in the range 0.5-4.0%, depends on

Smelter Feed

The data in Tables II–VI show that, with the exception of PGM-Ni concentrates, the combined NiCuCo grade of concentrates are in the range of about 8% to slightly above 20%, with an Ni/Cu weight ratio varying from about 1 to about 50. However, Ni/Cu weight ratios over 3 are rather the exception. The Ni/Co weight ratio of these concentrates is in general within the range of 25 to 40.

The African PGM-Ni concentrates have a lower NiCuCo content of about 3-4%, with Ni/Cu and Ni/Co weight ratios of 1.5-2 and 20-50, respectively. The true value of these materials are their high content of PGMs that varies from about 100 g/t to about 400 g/t.²

Flash Smelting

All flash smelters use Outokumpu technology with the exception of Inco's Copper Cliff Smelter that practices Inco oxygen flash smelting. The flowsheet of conventional flash smelters (see Table II), including Copper Cliff (Table III), consists of bone drying the concentrate, flash smelting, and converting the primary smelting matte to a low iron matte. Dry solid feed flash furnace throughputs are normally 100-150 t/h. In Outokumpu furnaces, the oxygen content of the reaction gas varies from 30-40 vol.% to 70 vol.%, while the Inco furnace operates with 100% tonnage oxygen. Matte grades (NiCuCo%) are usually in the upper 40s. A nickel partition (Ni%_{matte}/Ni%_{slag}) of about 50 is observed in Nadezda and Copper Cliff. Higher nickel partitions, 70 and 116, respectively, characterize the Kalgoorlie and Jinchuan operations where the flash furnace has an electric furnace appendix. Primary smelting matte is converted in Peirce Smith converters. The iron content of Bessemer Matte (converter product) varies from about 0.5% to about 4%. This material is further treated by either controlled cooling-milling-physical separation into nickel and copper intermediate products, or hydrometallurgical processing and electrowinning. With the exception of Kalgoorlie and Copper Cliff, where converter slag is recycled to the flash furnace, other smelters recover value metals from flash furnace and converter slag in dedicated slag cleaning units, normally electric furnaces. Smelter nickel recovery from NMBF is 94– 97%.

An important variation of the Outokumpu technology is the direct Outokumpu nickel (DON) process, in which the concentrate is directly flash smelted to about 5% iron matte, thus eliminating separate converting and associated molten transfers.4,5 This process is practiced at the Harjavalta and the Fortaleza smelters (see Table III). A substantial proportion of nickel reports to the flash furnace slag. This is recovered as a highly metallized matte in a dedicated slag cleaning electric furnace. Following granulation, the flash furnace and the electric furnace mattes are treated in separate hydrometallurgical installations.

The majority of the nickel sulfide flash smelters capture most or part of the process SO_2 in acid plants. Only in the BCL and Norilsk smelters do all of the process SO_2 go up the stack.

Electric Furnace Smelting

In this survey, the data for the 12 smelters using electric furnaces have been organized in two groups. The four straight nickel producers are called "conventional smelters." The corresponding data are presented in Table IV. The data of the smelters processing PGM-Ni feed are presented in Tables V and VI.

Conventional Smelters

Two of the conventional smelters, Falconbridge and Thompson, are located in Canada, and the other two, Norilsk Nickel Plant and Pechenganickel, are in Russia. Their combined output accounts for 80% of primary nickel production by electric furnace smelting of sulfide feed. The flowsheet of these plants consists of roasting, smelting, and converting. Separate converter slag cleaning is practiced in Falconbridge and in the Norilsk Nickel Plant. Process SO₂ is partially captured in Falconbridge and Pechenganickel. In Falconbridge, the fluid bed roasters' off-gas is processed in an acid plant. At roaster sulfur elimination of 75%, emissions amount to about 10% of concentrate sulfur.

Electric furnace nominal capacity varies from 50 t to 80 t dry solid feed/h, and energy consumption from 440 kWh/ t to 770 kWh/t. Matte grade varies within a wide range, 21-48% NiCuCo. The Falconbridge Smelter produces the highest-grade matte, a material that is also highly metallized due to high sulfur elimination in the roasters. Nickel partitions of 100 and higher are typical of electric furnace smelting. The electric furnace matte is converted in Peirce-Smith converters to a <1.0% to about 3% iron matte. The practice of further processing this material to market products varies from plant to plant. A high nickel recovery of 97-98% is observed in all these operations.

Falconbridge in 1994 changed from a two-furnace operation into a singlefurnace operation while maintaining nickel production rates.6 New furnace transformers and improved water-cooled refractory protection elements were later installed. At present, the Sudbury Smelter is operating at an average calcine smelting rate of 300 kg/h/m² of furnace hearth, at a nominal power of 40 MW. A 4 m diameter, 17 m long PS converter, blowing at 40% oxygen enrichment, is used for slag making and for processing nickel- and cobalt-containing scrap, while matte finishing to Bessemer is done in conventional converters.7 The converter slag value metals are recovered in Falconbridge's slag cleaning vessel. The clean, molten slag is discarded.

PGM-Ni Smelters

The Bessemer matte produced in these plants account for only 6% of primary nickel from sulfide sources (see Table I). As shown in Tables V and VI, the smelter flowsheet generally consists of concentrate drying, smelting, and converting. Due to the high MgO content of most of these concentrates, smelting temperatures are substantially higher than in straight nickel smelting. Slag temperature is usually about 1,600°C. Energy consumption is also higher, and varies between 700 kWh/t and 900 kWh/t of dry furnace feed. Converting of primary smelting matte normally takes place in PS converters, except in Waterval and Stillwater, where Ausmelt converters and top-blown rotary converters are respectively used. As in straight nickel sulfide smelters, the technology later used for processing the converter product determines the desired iron content of this material. The reader is referred to an earlier paper by one of the present authors for a detailed review of the South African PGM-Ni smelters.²

ACKNOWLEDGEMENTS

The authors express their appreciation to the smelters that directly or indirectly participated in this survey; without their cooperation this survey could not have been conducted. Thanks are also due to CVRD Inco (formerly Inco Ltd.), Xstrata (formerly Falconbridge Limited), the Russian State Research Institute of Non-Ferrous Metals (Gintsvetmet), Worley-Parsons HGE and Mintek for supporting this work.

References

1. A.E.M. Warner et al., "JOM World Nonferrous Smelter Survey Part III: Nickel: Sulfide," JOM, 58 (4) (2006), pp. 11–20.

2. R.T. Jones, "Platinum Smelting in South Africa," *South African Journal of Science*, 95 (November/December 1999), pp. 525–534.

3. A.D. Dalvi, W.G. Bacon, and R.C. Osborne, "Past and the Future of Nickel Laterite Projects," *Laterite Nickel 2004*, ed. W.P. Imrie and D.M. Lane (Warrendale, PA: TMS, 2004), p. 23.

4. I.V. Kojo, T. Mäkinen, and P. Hanniala, "Direct Outokumpu Nickel Flash Smelting Process (DON)— High Metal Recoveries with Minimum Emissions," *Nickel-Cobalt 97, Vol. III, Pyrometallurgical Operations, the Environment, and Vessel Integrity in Nonferrous Smelting and Converting,* ed. C. Díaz et al. (Montreal, Canada: MetSoc of CIM, 1997), pp. 25–34.

5. T. Mäkinen and P. Taskinen, "Physical Chemistry of Direct Nickel Matte Smelting," Sulfide Smelting '98: Current and Future Practices, ed. J.A. Asteljoki and R.L. Stephens (Warrendale, PA: TMS, 1998), pp. 59–68.

6. D.G. Tisdale and C.G. Ransom, "Adapting to One Furnace at Falconbridge," *Nickel-Cobalt 97, Vol. III, Pyrometallurgical Operations, the Environment, and Vessel Integrity in Nonferrous Smelting and Converting,* ed. C. Díaz et al. (Montreal, Canada: MetSoc of CIM, 1997), pp. 35–43.

7. S.W. Marcuson and C.M. Díaz, "The Changing Canadian Nickel Smelting Landscape—Late 19th Century to Early 21st Century," *Nickel and Cobalt 2005: Challenges in Extraction and Production*, ed. J. Donald and R. Schonewille (Montreal, Canada: MetSoc of CIM, 2005), pp. 179–207.

A.E.M. Warner is Senior Consultant with Worley-Parsons HGE in Toronto, ON, Canada; C.M. Díaz is an independent consultant in Mississauga, ON, Canada; A.D. Dalvi is with Inco Technical Services Limited, a subsidiary of CVRD Inco in Mississauga, ON, Canada; P.J. Mackey is with Xstrata Process Support (formerly Falconbridge Technology Centre) in Falconbridge, ON, Canada; A.V. Tarasov is with the State Research Institute of Non-Ferrous Metals "Gintsvetmet" in Moscow, Russia; and R.T. Jones is with the Pyrometallurgy Division at Mintek in Randburg, South Africa. A.E.M. Warner can be reached at (905) 637-8699; e-mail aemwarner@cogeco.ca.

JOM World Nonferrous Smelter Survey, Part III: Nickel: Laterite

A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, and A.V. Tarasov

Feature

In June 2004 JOM published the first installment in an ambitious TMS program: the World Nonferrous Smelters Survey. The program is intended to develop a database of all known nonferrous smelters. This paper, the third installment in the project, presents a survey for nickel smelters processing lateritic or other types of oxidic nickel ores. Data for nickel sulfide smelting is scheduled to be published by JOM in the second half of 2006.

INTRODUCTION

()

This nickel smelter survey is one of a series that the Extractive Metallurgy Division of TMS is publishing in *JOM* as an important component of the services that the society delivers to its members. This series was initiated in 2004 with the publication of a copper smelter survey.^{1,2} Within TMS, we believe that such surveys constitute a valuable information source for industry, research organizations, engineering companies, and academia, and an excellent means of facilitating benchmarking and the identification of potential areas of technical cooperation.

Several nickel smelting surveys and industry reviews were published between 1987 and 2003;3-7 the present survey covering 13 smelters presents the latest review of world laterite nickel smelters. The 13 world laterite smelters reported here total some 365,000 t/y of nickel output, representing about 30% of total world primary nickel output. A very high proportion of current operations participated, directly or indirectly, in this new survey. The tables included in this paper present data for nickel smelters processing lateritic or other types of oxidic nickel ores. Part II of the survey, reviewing the data for nickel sulfide smelting, will be published by JOM in the second half of 2006.

In this survey, smelter representatives were invited to review/complete technical questionnaires that were pre-filled by the authors using public information. Doniambo and Larymna did not participate. In these two cases, available public data are presented in the accompanying tables. Three operating Ural smelters, Rezh, Ufaleynickel, and Yuzhuralnickel,

Within TMS, we believe that such surveys constitute a valuable information source for industry, research organizations, engineering companies, and academia, and an excellent means of facilitating benchmarking and the identification of potential areas of technical cooperation.

that are still using blast furnaces to produce matte from agglomerated oxidic nickel ores, were not included in the survey.

Table I lists the plants in the survey and their respective annual nickel productions. The nickel laterites smelting survey results are presented in Tables II to IV that were composed by grouping the smelters as Latin America (Table II); Japan and New Caledonia (Table III); and Indonesia, Eastern Europe, and Greece (Table IV).

Tonnages in these tables are given in metric tonnes. The acronym NMBF stands for "new metal bearing feed."

NICKELIFEROUS LATERITES: BACKGROUND

Nickeliferous laterites are ores that were generated by the prolonged weathering of "ultramafic" rocks containing ferromagnesian silicate minerals. In this weathering process, nickel leaches from the upper layers and subsequently precipitates in the lower layers, substituting NiO for MgO and FeO in the lattice of respectively silicate and iron oxide minerals. The chemistry and mineralogy of these ores vary within a very wide range, particularly with respect to Fe/Ni and SiO₂/MgO weight ratios, and chemical and physical H₂O contents. Nickel is recovered from high iron-containing laterites (limonite, nontronite/smectite) by hydrometallurgical processing, while pyrometallurgy is generally used to extract nickel from low iron-containing saprolites and garnierites. Dalvi et al. report that laterites contain about 70% of the estimated world land-based nickel reserves;8 about 40% of these ores would be suitable for smelting.

The first processing treatment for recovering nickel from laterites was developed in 1879 in New Caledonia, based on the iron blast furnace technology of the day. Production of nickel from laterites has grown slowly since that time. However, during the 20th century, sulfide ores were the predominant source of primary nickel, essentially due to the available reserves and the cost of production. With improvements in technology, the proportion of primary nickel produced from laterites increased steadily

Industrial Survey

۲

Plant	Country	Annual Tonnage (t/y)*
Falcondo	Dominican Republic	28,500
Cerro Matoso	Colombia	49,100
Loma de Niquel	Venezuela	17,400
Codemin	Brazil	6,500
Hyuga	Japan	22,000
Hachinohe	Japan	41,000
Nippon Yakin	Japan	15,000
Doniambo	New Caledonia	60,000
PT Inco	Indonesia	72,000
Aneka Tambang	Indonesia	11,000
PFK	Ukraine	16,000
FENI	Macedonia	7,000
Larymna	Greece	19,200
Total		364,700**

in the second half of the last century. In 2003, these ores accounted for 42% of the world 1,200 kt primary nickel production; ~70% of the laterite nickel was produced by pyrometallurgical processing.⁸ Table I presents this nickel output by plants in the survey.

Dalvi et al. predicted that by 2012 half of the world primary nickel will be produced from laterites, and that the proportion of nickel extracted by hydrometallurgical processing of these ores will also increase. Clearly then, the next decade promises to be an interesting one for nickel laterites.

PYROMETALLURGICAL PROCESSING OF LATERITES

The standard laterite pyrometallurgical flowsheet consists of the following stages, each with a specific objective:

- Drying: elimination of most or a substantial portion of the free moisture content of the ore
- Calcining-Reduction: elimination of the remainder of the free ore moisture and of its crystalline water, preheating of the ore, and reduction of a substantial portion of the nickel and a controlled portion of the iron
- Electric furnace smelting: completion of reduction of the nickel and separation of the product ferronickel from the gangue that reports to a ferromagnesian silicate slag
- Refining: elimination of undesirable minor elements from the ferronickel to meet market specifications.

The production of sulfur-deficient matte in smelting by adding sulfur to the feed calcine, followed by converting of this material to a low-iron nickel matte product (Inco's Sorowako operation, see Table IV) is an important variation of the standard flowsheet. A second variation, which developed from a technique for iron production, consists of conducting the calcining-reduction stage at a sufficiently high temperature to cause the partial melting of the calcine, thus permitting the growth of ferronickel granules.

The pasty calcine is subsequently water-quenched and comminuted, and the metal granules (referred to as "luppen" from the original German developments in this approach to iron production) are magnetically separated from the gangue (Nippon Yakin's Oheyama operation, see Table III). The reader is referred to an earlier survey⁶ for a thorough discussion of the chemistry of the pyrometallurgical processing of laterites. Good descriptions and flow-sheets of a number of laterite smelters are found in References 7, 9, and 10.

Feed

Due to their chemical and mineralogical composition, laterites are not amenable to concentration by physical means. However, screening is normally used to separate low-nickel-containing boulders from run-of-mine ore. Typically, the feed to a laterite smelter contains 1.5–2.5% nickel, 25–35% free moisture, and 10–12% crystalline water. In addition, the normal products of smelting, ferronickel and ferromagnesian silicate slag, have high liquidus temperatures. Not surprisingly, laterite smelting is a highly energy-intensive operation, with an average smelting electrical consumption of 502 kWh/t of calcine, based on the data reported in Tables II to IV.

This survey shows that 77% of the laterite smelters are part of integrated mine-smelter operations; the others are custom operations. In the dedicated plants, blending of ores from various mining sites is practiced to generate a relatively constant composition feed to the smelter. Custom operations, such as the Japanese smelters, process various blends of ores imported from New Caledonia, Indonesia, and the Philippines. The Eastern European smelters, including Larymna (Greece), process oxidic nickel ores that have lower moisture contents and substantially higher Fe/Ni and SiO₂/MgO weight ratios than typical laterites.

Drying

Most plants in the survey use directfired rotary dryers for elimination of a portion of the free moisture of the ore. Ideally, the dryer should yield an easyto-handle, non-dusting product. This limits physical water evaporation in dryers, with the product still containing from about 15% to slightly above 20% moisture. Some smelters do dry to lower moisture contents (e.g., Cerro Matoso [Table II]). Drying is a low-temperature operation, with the moisture-laden offgas exiting the dryer at about 100°C.

Calcining-Reduction

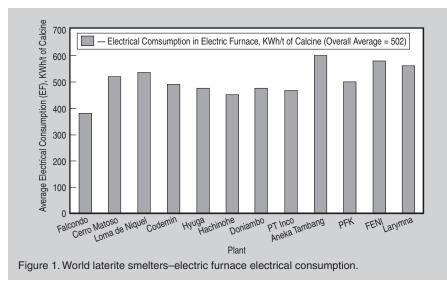
The partially dry ore is calcined and reduced in slightly sloped rotary kilns (RKs). The exception is the Falcondo Smelter, where these process steps take place in rectangular section shaft furnaces¹¹ that are fed with partly dried ore as briquettes.

In RKs, fuel is burned substoichiometrically at the solids discharge end in order to generate the reducing atmosphere required to control iron reduction to the desired level. The addition of a solid carbonaceous reductant such as bituminous coal or anthracite to the ore is common practice. Combustion gases travel countercurrent to the slowly moving ore that is successively dried, preheated, calcined, and finally partially ۲

reduced. Temperatures above 700°C are required to fully eliminate crystalline water. The accompanying dissociation of the lattice structure of the hydrated silicates generates highly reactive amorphous oxides that in turn lead to fast reduction rates. Much higher temperatures would result in undesirable silicate recrystallization and calcine stickiness. While traveling to the feed end of the kiln, the gas combustibles are gradually burned with air fed through kiln-mounted pipes, thus optimizing fuel utilization. Calcine is normally discharged at 700-900°C, while the low combustibles off-gas leaves at the feed end at 250-400°C. Dusting rates are typically 10-20%. The dust is normally agglomerated prior to being recycled to the RK.

Current RK technology efforts focus on adopting/improving computerized process monitoring/control and dependable kiln on-board instrumentation, and achieving higher energy efficiency and ore throughputs. Replacing refractory bricks by monolithic castable lining has resulted in longer kiln campaigns. At some plants, efforts are underway to control dust generation and improve the treatment of this dust. Recently, a computational fluid dynamics model was used for the basic design of Sorowako's RK #5.¹²

Electric Furnace Smelting


((()

In laterite smelting, the high liquidus temperatures of ferronickel and ferromagnesian slag require slag bath temperatures of about 1,600°C. Increased furnace power density, leading to a higher specific processing rate and lower specific energy consumption, has been achieved by adopting a high-voltage (shielded-arc) operation.^{13,14} In this mode of operation, a substantial proportion of the power input is transferred directly to the calcine surrounding the arc, and it is almost exclusively used for smelting, while the power released in the bath suffice to maintain slag and metal at temperatures adequate for tapping.

High-voltage operation was first developed by Falcondo and Hatch Associates in the 1970s, and adopted at Cerro Matoso and Sorowako in the mid-1980s. Today, furnaces in these smelters operate at power inputs of 60 MW to 75 MW, with power densities of 230 kW/m² to 360 kW/m² of the furnace hearth. New furnace control and power electronics technology have been developed to respond to the decreased furnace stability and power swings associated with high-voltage operation.^{15,16}

Figure 1 presents the average electrical consumption in the electric furnaces of the laterite plants reviewed in this survey. The data show that the electrical consumption varies from 379 kWh/t to 600 kWh/t of calcine, with the average being 502 kWh/t of calcine.

Furnace sidewall integrity is an important issue in intensive smelting operations, in particular in those cases where the smelting requirements call for highly superheated slag. A variety of copper water-cooling devices, each of which respond to specific refractory protection needs, are being used to protect furnace integrity.^{13,14} Currently, nickel laterite smelting furnace campaigns of 10–20 years between major rebuilds are quite

2006 April • JOM

common.

With the exception of P.T. Inco's Sorowako and Nippon Yakin's Oheyama, either high- or low-carbon ferronickel is the usual product of laterite smelters. Ores with a relatively low Fe/Ni weight ratio, not higher than 6, are amenable to producing lower liquidus temperature high-carbon metal at an acceptable nickel grade. This is the case of the Japanese smelters and of Pomalaa. Low-carbon ferronickel is produced from ores with higher Fe/Ni weight ratio. Converting is practiced at the Pobuzhie, FENI MAK, and Larymna smelters to increase the nickel content of the low-grade electric furnace product. The feed to the last two smelters has an unusually high Fe/Ni weight ratio.

Converting and Refining

Tables II to IV give detailed information on the process stages and type of equipment and reagents used for refining crude ferronickel and converting matte to meet market product requirements in different smelters. The tables also contain data on product form and composition.

Nickel Recovery from New-Metal-Bearing Feed

Except for lower-capacity operations, nickel recovery from new-metal-bearing feed in laterite smelting is higher than 90%. In most cases, the survey data show that the smelting nickel partition ratio (i.e., the ratio of the %Ni content of the ferronickel to the %Ni content of the slag) is close to or above 200, based on reported data for the plants in the survey (see Tables II-IV). However, due to the low nickel content of the ore, in laterite smelting the weight ratio of slag to metal product is also high. The highest recoveries are observed in smelters with relatively high-grade and low Fe/Ni weight ratio feed.

ACKNOWLEDGEMENTS

The authors express their appreciation to the smelters that directly or indirectly participated in this survey; without their cooperation this survey could not have been conducted. Thanks are also due to Inco Limited, Falconbridge Limited, the Russian State Research Institute of Non-Ferrous Metals (Gintsvetmet), and WorleyParsons HGE for supporting this work.

	Table	II. Smelters in Latin America		
		Producer		
	Falcondo Falconbridge Dominicana Dominican Republic	Cerro Matoso BHP Billiton Montelibano, Colombia	Loma de Niquel Anglo American PLC Venezuela, SA	Codemin Codemin S.A. (Anglo American), Brazil
Annual Ni Production from NMBI Form Recovery (%)	F (t/y) 28,500 FeNi 91.2	49,100 (2003) FeNi 93.8	17,400 (2004) FeNi	6,500 (2004) FeNi 87.5
Feed Composition	1.20	2.2	1.40	1.44
Ni (%) Co (%)	1.38 0.04	2.2 0.085	1.48 0.08	1.44 0.04
Fe (%)	14.5	15.2–15.4	17	16.9
Fe/Ni S/M	10.5 1.6	7 2.76–2.8	11.5 1.3	11.7 1.6
Technology	1.0	2.70-2.0	1.5	1.0
Drying	2 rotary dryers	2 rotary dryers	1 rotary dryer	1 rotary dryer
Reduction Smelting	12 shaft furnaces 2 rectangular furnaces	2 rotary kilns 2 round furnaces	2 rotary kilns 2 round furnaces	2 rotary kilns 2 round furnaces
Converting	Not applicable	Not applicable	Not applicable	Not applicable
Refining	2 ASEA-SKF ladles	COBS and ASEA ladles	ASEA ladles	6.5 MVA refining Electric furnace
Blending				
Blending System	—	Blending piles	Blending piles (stacker/reclaimer)	Tripper system/ loader reclaimer
Materials Blended	<64 mm ore + fines recovered from >64 mm fraction	<63 mm ore from screening and crushing	<60 mm ore	Chevron piles <80 mm or
Drying				
ype of Dryer and Number of Units	2 rotary dryers	2 rotary dryers	1 rotary dryer	1 rotary dryer
Outside Dimensions (Diam., Length–m)	4.27×24.4	5.1 × 45	4.8 × 34	3.4×22
(ominal Capacity (Dry t Ore/h)	285	260	234	104
Dre Moisture In (%) Dre Moisture Out (%)	23–28 18	22–30 (seasonal) 10–12 (seasonal)	25–30 Minimum of 15	25–27 23–24
Evaporation Rate	93	64	60	27
(kg H ₂ O/m ³ Dryer) Fossil Fuel–Type	Naptha	Natural gas	Natural gas	Fuel oil
verage Fuel Consumption		12–18 Nm ³ /t (seasonal)	10–11 Nm ³ /t	9.0 kg/t
(L or kg or Nm ³ /Dry t Ore)		4		0.5
Dust Handling Rate (%) Disposition	Recycled back to dryer	4 Kiln feed mixer-struder	Pelletized and fed to RK	0.5 Transported to the dust bin
Calcination/Reduction				
Equipment: Number of	12 shaft furnaces	2 rotary kilns	2 rotary kilns	2 rotary kilns
Units and Type lize (diam. × length or	5.5 long \times 1.37 wide	RK1 6.1 × 185	5.4×120	3.6×70
$length \times width \times height) (m)$	\times 8.4 high	RK2 6.0 × 135		
Geed Rate (Dry t Ore/h) Calcine Discharge	30 (briquettes) 800–1,000	165 each RK 800–850	65 850	75 900
Temperature (°C)	000 1,000	000 000	000	200
Sossil Fuel Type Average Fossil Fuel Consumption	See reductant	Natural gas 50–55 Nm ³ /t	Natural gas 80–85 Nm ³ /t	Heavy oil 52 kg/t
(L or kg or Nm ³ /t of Dry Ore) Reductant Type	Partially combusted naphtha (reformed gas)	Anthracite	Coal	Woodchip
verage Reductant Consumption		50-60	55	180
(kg/t of Dry Ore) Dusting Rate (%)	3	RK1 12, RK2 22	15	20
Dust Disposition	Blended with fresh ore	Rotary kiln mixer–Struder	Pelletized and rec. to RK	Recycled to rotary kiln
melting				
Electric Furnace	2 rectangular furnaces	2 round furnaces	2 round furnaces	2 round furnaces
Dutside Dimensions (m)	$\begin{array}{c} \text{(Six-electrode in-line)} \\ 24.3 \times 8.8 \times 7.3 \end{array}$	22.15 × 7.6	16.8×6.8	15×6
Furnace Wall Cooling System	Copper cooling fingers	Finger and plate copper coolers	Spray cooling water-shell	Spray cooling water-shell
Maximum Power (MW)	80	75	45	22
Average Power (MW) Power Density (kW/m ² Hearth– Average)	56 329	65–70 211	40	15.5 117

۲

14

JOM • April 2006

	Table II. Si	melters in Latin America (co	ont.)	
		Produce	r	
	Falcondo Falconbridge Dominicana Dominican Republic	Cerro Matoso BHP Billiton Montelibano, Colombia	Loma de Niquel Anglo American PLC Venezuela, SA	Codemin Codemin S.A. (Angle American), Brazil
Smelting (cont.)				
Average Voltage (V)	1,500	1,080	500	500
Secondary Current (kA)		24	25	15
Nominal Capacity	140	178	75	29
(t of Calcine/h/fce)	270	500	505	100
Average Electrical Energy Consumption	379	520	535	490
(kWh/t of Calcine)				
Electrode Consumption	1.08	1.3	3.9	3.3
(kg/t of Calcine)				
Matte/Metal Temperature (°C)	1,455	1,450-1,470	1,550	1,480-1,500
Matte/Metal Composition				
Ni (%)	37-40	35 0.77	20-25	28 0.56
Co (%) Fe (%)	0.92 60.3	Balance	0.45 78	Balance
Slag Temperature (°C)	1,550	1,560	1,650	1,600
Slag Composition	1,550	1,500	1,050	1,000
SiO ₂ (%)	43.4	56	45.3	44.5
MgO (%)	29.3	20	36.6	28.7
Fe (%)	13.9	14.7	11.8	14.9
SiO ₂ /MgO	1.7	2.8	1.24	1.55
Partition Coefficient (Ni)	257	175	205	215
Partition Coefficient (Co)	92	26	>22.5	—
Converting	See refining	See refining	See refining	See refining
Number & Type			_	_
Outside Dimensions (m)	_	_	—	—
No of Tuyeres	—	—	—	—
Fuyeres Diam. (mm)	—	—	—	—
Average Blowing Rate (Nm^3/h)	—	_	—	—
Blast O ₂ (Vol.%) Feed				
Product Matte Composition				
Ni (%)	_	_	_	
Co (%)		_		—
Fe (%)	—	—	—	—
S (%)		—	—	—
Slag Composition				
SiO ₂ (%) Fe (%)				
Slag Disposition			_	_
Refining				
First Step	Dephosphorization	De-P and De-C	De-P and De-C	Dephosphorization
Equipment	2 4 MW ASEA-SKF ladles	COBS and ASEA ladles	ASEA ladles	FeNi tapping ladle
Reagent (s)	Basic oxidizing slag	CaO/SiO ₂ slag and O ₂	CaO and O ₂	CaO and O ₂
Process Temperature (°C)	1,500–1,550	1,440	1,650–1,700	1,500
Second Step	Deoxidation	Deoxidation	Desulphurization	Desulphurization
Equipment	Same as above	Same as above	Same as above	6.5 MVA refining
	-			electric furnace
Reagent(s)	Ferrosilicon	FeSi and Al	CaO, CaSi, FeSi, Al_2O_3	CaO and O ₂
Process Temperature (°C) Fhird Step	1,500–1,550 Desulphurization if required	1,550 Desulphurization	>1,600	1,630
Equipment	Same as above	Same as above		
Reagent(s)	Basic reducing slag	Basic reducing slag	_	
Process Temperature (°C)	1,500–1,550	1,620	_	_
Form of Product FeNi	100% 0.1 kg "ferrocones"	100% 3-50 mm shots	100% 3-30 mm shot	100% shot
Comp of Product FeNi	-			
Ni (%)	38.9	34–36	20-25	30
Co (%)	0.93	<1.0	0.49	0.56
C(%)	0.06	<0.04	≤0.04 <0.06	0.005
S (%) Si (%)	0.04 0.35	<0.06 <0.7	≤ 0.06 ≤ 0.2	0.067
Si (%) P (%)	0.35	<0.7 <0.04	≤0.2 ≤0.03	0.016
r (%) Cr (%)	0.02	<0.04	_0.05	0.010

۲

2006 April • JOM

15

314bWarner Industrial Survey.ind15 15

۲

3/16/2006 5:09:01 PM

		Smelters in Japan and New		
		Produ	cer	
	Hyuga Hyuga Smelting Co Ltd Miyazaki, Japan	Hachinohe Pacific Metals Co. Ltd. Hachinohe, Japan	Oheyama Nippon Yakin Kogyo, Ltd. Oheyama, Japan	Doniambo SLN (Eramet Nickel) Noumea, New Caledoni
Annual Ni Production from NMBF (t/y)	22,000	41,000 (Avg. 2002–2004)	15,000 (2003)	60,000 (80% as FeNi, 20% as matte)
Form Recovery (%)	FeNi (1% ingots, 99% shots) 97–98	FeNi (30% ingots, 70% shots) 97	FeNi Luppen (0.5–20 mm) 93	FeNi (ingots and granules)
Feed Composition	97-98	91	95	—
Ni (%)	2.1-2.5	2.3 2.3		2.7
Co (%)	<0.1	0.08	_	0.06
Fe (%)	11-23	14	13.6	13
Fe/Ni S/M	4.8–10 1.49–1.67	6.1 1.6	5.9 1.9	4.8 1.75
Technology	1.49-1.07	1.0	1.9	1.75
Drying	1 rotary dryer	1 rotary dryer 2 impact dryers	5 preheating grates (each attached to one RK)	2 rotary dryers
Reduction	2 rotary kilns	3 rotary kilns	5 rotary kilns	5 rotary kilns
Smelting	2 round furnaces	3 round furnaces	Not applicable	3 rectangular furnaces
Converting	Not applicable	Not applicable	Not applicable	PS converters (20% of crude FeNi + sulfur)
Refining	Induction furnace and LD converter	Ladles with stirrers	Not applicable	Shaking ladle
Blending				
Blending System	Ore stockyard	—	1/3 ore ground wet, 2/3 ore ground dry; two fractions	Blending piles
Materials Blended	±100 mm ore from New Caledonia and Indonesia (target Fe/Ni 0.14–0.18, SiO,/MgO 1.49–1.67)	Ores from New Caledonia, Indonesia, and Philippines	blended in rod mill Blend of ground (<3mm) New Caledonia and Indonesia ores, limestone and anthracite is briquetted	Various saprolite ores
Drying			and analiations is conquered	
Type of Dryer and	1 rotary dryer	1 rotary dryer	5 preheating grates	2 rotary dryers
Number of Units Dutside Dimensions (Diam., Leng		2 impact dryers Rotary: 4.75×35	(each attached to one RK) $17 \text{ m} \times 4 \text{ m}$	4×32
-		Impact: $9 \text{ m} \times 4 \text{ m} \times 3 \text{ m}$		
Nominal Capacity (Dry t Ore/h)	160	Rotary: 105; impact: 210	27 (each lower cap. line)	220
Dre Moisture In (%)	23–30 22–23	30 24	17 (feed briquettes)	26
Dre Moisture Out (%) Evaporation Rate	30	19 (rotary dryer)	0 NA	18 72
$(\text{kg H}_2\text{O/m}^3 \text{ Dryer})$	50	1) (lotary drycr)	11A	12
Fossil Fuel Type	Pulverized coal + bunker C oil for ignition +	Waste electric furnace gas	Rotary kiln hot gas	Heavy fuel oil
Average Fuel Consumption	electric furnace off-gas 12–13 L (includes oil	None	_	_
(L or kg or Nm ³ / Dry t Ore) Dust Handling Rate (%)	equivalent of coal) 2–5	1	14 (RK plus preheater)	_
Disposition	Recycled to dryer	Blended with ore	Recycled to ore blending	To dryer discharge
Calcination/Reduction				
Equipment: Number of Units and Type	2 rotary kilns	3 rotary kilns	5 rotary kilns	5 rotary kilns
Size (diam. × length or length × width × height–m)	4.8×105	$5.25 \times 100, 5.5 \times 115, 4.6 \times 131$	4 RKs 3.6 × 72 1 RK 4.2 × 72	4×95
Feed Rate (Dry t Ore/h) Calcine Discharge Temperature (°C)	60-65 (each kiln) 800–900	90, 110, 90, respectively 1,050	27 (Each low cap. line) 1,200–1,250. Pasty discharge is water-cooled, ground. Jigging/magnetic separation yields 23% Ni, 0.5–20mm FeNi luppen	900
Fossil Fuel Type	55–65% pulverized coal, balance Bunker C oil	Pulverized coal	Coal	Pulverized coal
Average Fossil Fuel Consumption (L or kg or Nm³/t of Dry Ore)	60–62 L/t (includes oil equivalent of coal)	30-50 kg/t	80 kg/t	—
Reductant Type Average Reductant Consumption	Coal 70–80	Coal 110	Anthracite (briquettes) 130	Anthracite 50
(kg/t of Dry Ore) Dusting Rate (%) Dust Disposition	15–20 Pelletized and recycled	25 Pelletized and recycled	14 (RK plus preheater) Recycled to ore blending	10 Recycled to RKs

16

JOM • April 2006

۲

		Produ	cer	
	Hyuga Hyuga Smelting Co Ltd Miyazaki, Japan	Hachinohe Pacific Metals Co. Ltd. Hachinohe, Japan	Oheyama Nippon Yakin Kogyo, Ltd. Oheyama, Japan	Doniambo SLN (Eramet Nickel) Noumea, New Caledonia
Smelting				
Electric Furnace Outside Dimensions (m)	2 round furnaces #3 18.5 × 5.5; #5 17.5 × 5.4	3 round furnaces 18×5.6 , 19×6.15 , 20×6.6	Not applicable	3 rectangular furnaces $33 \times 13 \times 5.5$
Furnace Wall Cooling System	Spray cooling water-shell	Spray cooling water-shell	_	—
Maximum Power (MW) Average Power (MW)	#3 60; #5 40 Max. power 60MW day time, 80 MW night time	43, 54, 54, respectively 45	—	50 36
Power Density (kW/m ² Hearth–Average)	#3 170, #5 140	_	—	94
Average Voltage (V)	400-900	664, 760, 760, respectively	_	300
Secondary Current (kA) Nominal Capacity	28–32 60–65	35, 42, 42, respectively 80, 100, 100, respectively	_	20 76 (at 36 MW)
(t of Calcine/h/fce) Average Electrical Energy Consumption (kWh/t of Calcine)	470–480	450	—	475
Electrode Consumption (kg/t of Calcine)	~1	1.5	—	_
Matte/Metal Temperature (°C) Matte/Metal Composition	1,400-1450	1,450	_	1,500
Ni (%) Co (%)	17–25 <0.8	18.5 0.5	—	22–28
C0 (%) Fe (%)	<0.8 70–75	0.5	_	_
Slag Temperature (°C) Slag Composition	1,550-1,600	1,550	—	1,600
SiO ₂ (%) MgO (%)	50–55 32–36	54 35	_	55.8 31.9
Fe (%)	7–10	5		5.7
SiO ₂ /MgO Partition Coefficient (Ni)	1.49–1.67 210	1.5 264		1.75 185
Partition Coefficient (Co)		25	_	
Converting	See Refining	See Refining	Not Applicable	
Number & Type	—	—	—	PS converters
Outside Dimensions (m) No. of Tuyeres		_	_	_
Tuyeres Diam. (mm)	_	_	_	_
Average Blowing Rate (Nm ³ /h)	—	—	—	—
Blast O ₂ (Vol.%) Feed	_	_	_	20 wt.% crude FeNi + S
Product Matte Composition				
Ni(%) Co (%)	_	_		75–78
Fe (%)	_			
S (%)	—	—	—	—
Slag Composition SiO ₂ (%)				
Fe (%)				_
Slag Disposition	—	—	—	—
Refining				
First Step Equipment	Desulphurization Low-frequency induction furnace	Desulphurization Ladles with stirrers		Desulphurization Shaking ladle
Reagent(s)	CaC_2		—	CaC_2
Process Temperature (°C) Second Step	1,400–1,450 De-C & De-Si	1,500		Decarburizing
Equipment	LD converter			Shaking ladle
Reagent (s)	Oxygen	—	—	Oxygen
Process Temperature (°C) Third Step	1,600–1,650		_	
Equipment	_	_	_	_
Reagent (s)	—	—	—	_
Process Temperature (°C) Form of Product FeNi	1% ingots (I), 99% shots (S)	30% ingots, 70% granules	Luppen (crude FeNi)	
Comp. of Product FeNi	-		Euppen (erude Ferui)	
Ni (%)	Hi-C I & S>16 LoC I & S 17–28	17-23	—	FN1 24–30, FN4 22–28
Co (%)	Hi-C & Lo-C I & S <ni 0.05<="" td="" ×=""><td>Ni/Co wt. ratio <20</td><td>—</td><td>—</td></ni>	Ni/Co wt. ratio <20	—	—

2006 April • JOM

	Table III. Smelters in Japan and New Caledonia (cont.)					
		Producer				
	Hyuga Hyuga Smelting Co Ltd Miyazaki, Japan	Hachinohe Pacific Metals Co. Ltd. Hachinohe, Japan	Oheyama Nippon Yakin Kogyo, Ltd. Oheyama, Japan	Doniambo SLN (Eramet Nickel) Noumea, New Caledonia		
Refining (Cont.)						
S (%)	< 0.03	< 0.030	_	FN1 0.03, FN4 0.23		
Si (%)	Hi-C I & S <5 Lo-C I & S<0.3	2	—	FN10.03, FN4 1.0-3.0		
P (%)	Hi-C I & S<0.05 Lo-C I & S<0.02	<0.050	—	—		
Cr (%)	Hi-C I & S<2.5	1.3	_	_		

Table IV. Smelters in Indonesia and Eastern Europe

Producer Pobuzhsky Ferronickel FENI Sorowako Pomalaa Larvmna P.T. Inco FENI MAK Larco GMM SA P.T. Aneka Tambang **Combine PFK** Sulawesi, Indonesia Pobuzhie, Ukraine Sulawesi, Indonesia Macedonia Larymna, Greece 72,000 (2004) 11,000 16,000 7,000 19,200 (2002) Annual Ni Production from NMBF (t/y) FeNi-90% ingots and Form FeNi ingots and FeNi ingots Bessemer matte Converter alloy shot granules shots 10% pigs Recovery (%) 90 96 87 88.5 88-89 Feed Composition Ni (%) 1.8 - 1.92.2 2.4 1.25 1.1Co (%) 0.06 0.05 0.04 0.06 0.06 Fe (%) 20 13.4 18-20 21 32.0 Fe/Ni 10.5 6.1 7.9 16.8 29 S/M 2 1.64 1.9 2.5 12 Technology Drying Not applicable 3 rotary dryers 2 rotary dryers Not applicable Not applicable Reduction 5 rotary kilns 2 rotary kilns 4 rotary kilns 2 rotary kilns 4 rotary kilns 4 round furnaces 2 round furnaces 2 rectangular furnaces 4 round furnaces 2 rectangular furnaces Smelting Two oxygen vertical 2 OBM converters 3PS converters Converting Not applicable Not applicable converters Ladle with refractory Electric furnace FeNi Refining Not applicable Induction furnace Not applicable stirrer and shaking tapping ladle and ladle vertical oxygen converter Blending Blending System No blending prior Whell loader Ore stockpile Ore is crushed, wet Yes to drying ground, and magnetically separated. Non-magnetic fraction is fed to RK Materials Blended Dry, <2.54 cm EB & WB Ores from 3 different Various nickel oxide Various nickel oxide Various nickel oxide ores blended to control ores (not typical mining areas ores (not typical ores (not typical S/M ratio to ~2.0 laterites) laterites) laterites) crushed to <15 mm Drying Not applicable Not applicable Not applicable ____ Type of Dryer and 3 rotary dryers 2 rotary dryers Number of Units $\#1-5 \times 50, \#2-5.5 \times 50,$ Outside Dimensions 3.2×30 (diam., length-m) $#3-6 \times 65$ Nominal Capacity #1-240, #2-305, 50 (Dry t Ore/h) #3-410 Ore Moisture In (%) 29-34 30 Ore Moisture Out (%) 20 22 Evaporation Rate 47 30

Pulverized coal

35

3

Added to

dryer product

2 rotary kilns

2 rotary kilns

_	

4 rotary kilns

18

JOM • April 2006

314bWarner Industrial Survey.ind18 18

(kg H₂O/m³ Dryer) Fossil Fuel–Type

Consumption (L or kg or Nm³/Dry t Ore)

Calcination/ Reduction Equipment: Number

of Units & Type

Average Fuel

Dust Handling

Rate (%)

Disposition

Oil (HSFO)

26

Mixed in Pugmill with

dust from RK

5 rotary kilns

۲

4 rotary kilns

			Producer		
	Sorowako P.T. Inco Sulawesi, Indonesia	Pomalaa P.T. Aneka Tambang Sulawesi, Indonesia	Pobuzhsky Ferronickel Combine PFK Pobuzhie, Ukraine	FENI FENI MAK Macedonia	Larymna Larco GMM SA Larymna, Greece
Calcination/ Reduction (Cont.)				
Size (Diam. × Length or Length × Width × Height–m)	RK 1, 2, 3–5.5 × 100: RK 4–6 × 115, RK 5–6 × 135	RK1 4 × 90; RK2 4.2 × 90	3.6 × 75	4.6×75	Two RKs 4.2 × 90; One RK 5.2 × 90; One RK 6.1 × 125
Feed Rate (Dry t Ore/h)	RK 1, 2, 3–160 RK 4–220, RK 5–235	RK1 32; RK2 35	80 (each kiln)	140 (sintered pellets)	80 (6.1 × 125 RK)
Calcine Discharge Temperature (°C)	all wet t/h 700	800-1,000	750-800	750-800	850
Fossil Fuel Type	HSFO	Pulverized coal	Coal	Coke	Pulverized anthracite/lignite
Average Fossil Fuel Consumption(L or kg or Nm ³ /t of Dry Ore)	66 kg oil/t calcine	115 kg/t	40 kg/t	5 kg/t	
Reductant Type	Bituminous coal	Anthracite and coal	Anthracite	Lignite	Lignite, coal
Average Reductant Consumption (kg/t of Dry Ore)	35-40	67	80	140	—
Dusting Rate (%) Dust Disposition	15–17 Blended in pug mill and recycled to ore dryer	8 Pellets of dust + fine ore are recycled to RK	12–16 To ore storage	About 10 To ore storage	6.7 (6.1 × 125 RK) Pelletized and reverted to RK
Smelting					
Electric Furnace	4 round furnaces	2 round furnaces	2 rectangular furnaces	2 rectangular furnaces	4 round EFs
Outside Dimensions (m)	18×6	15×5.6	$24.7 \times 9.5 \times 6$	$40 \times 11.5 \times 6$	Diam.–one EF 17.6m; three EFs 12.2m
Furnace Wall Cooling System	Copper cooling fingers	Spray cooling water-shell	Spray cooling water-shell	Spray cooling water-shell	_
Maximum Power (MW)	70–80/furnace	20 and 25, respectively	50	85	1EF 50; 1EF 36; 2EFs 32
Average Power (MW) Power Density (kW/m ² Hearth–Average)	55–60 236	17 114	38 170	55 120	42 (large EF) 189 (large EF)
Average Voltage (V) Secondary Current (kA)	1,000–1,800 28–35	430 23.5	500 45	300 175	_
Nominal Capacity (t of Calcine/h/fce)	126	28.3	63	94	_
Average Electrical Energy Consumption (kWh/t of Calcine)	465	600	620	580	560
Electrode Consumption (kg/t of Calcine)	1.4	1.1	3	2	_
Matte/Metal Temperature (Matte/Metal Composition	°C) 1,350–1,400	1,450	1,350	1,500	1,450
Ni (%) Co (%)	26 0.6	19.15 0.3	17 0.5	17 0.8	15 0.7
Fe (%)	63	Balance	Balance	Balance	82
Slag Temperature (°C) Slag Composition	1,500–1,550	1,550	1,550	1,550	1,550
SiO ₂ (%) MgO (%)	47.6 22.7	57.2 31	48 20	About 40 About 18	36.8 3.1
Fe (%)	18.4	4.6	20	35	32.7
SiO ₂ /MgO	2.1	1.85	2.4	2.2	12
Partition Coefficient (Ni) Partition Coefficient (Co)	173 20	213 NA	>212 >50	170 40	100 35
Converting	_	Not Applicable	See Refining	See Refining	See Refining
	3PS converters CV 2–7.3 × 11.8, 2V3 and CV4–7.3 × 12.7	_	_	_	_
No. of Tuyeres Tuyeres Diam. (mm) Average Blowing	20–28 51 18,000				
Rate (Nm ³ /h) Blast O ₂ (Vol.%) Feed	Air EF matte		_	_	_
Product Matte/Metal Composition	70				
Ni (%) Co (%)	78 1		_	_	
Fe (%)	>0.7				

2006 April • JOM

Table IV. Smelters in Indonesia and Eastern Europe (cont.)					
	Producer				
	Sorowako P.T. Inco Sulawesi, Indonesia	Pomalaa P.T. Aneka Tambang Sulawesi, Indonesia	Pobuzhsky Ferronickel Combine PFK Pobuzhie, Ukraine	FENI FENI MAK Macedonia	Larymna Larco GMM SA Larymna, Greece
Converting (cont.)					
Slag Composition					
SiO ₂ (%)	25	_			
Fe (%)	53	_	_	_	_
Slag Disposition	Slag >0.6% Ni is reverted cold to electric furnace	_	_	_	_
Refining					
First Step	—	Desulphurization	Desulphurization	Desulphurization	Electric furnace FeNi upgrading
Equipment	—	Ladle with refractory stirrer	Electric furnace tapping ladle	Induction furnace	2 OBM converters
Reagent (s)	_	$CaC_2 + Na_2CO_3$	soda ash	Calcium carbide	Lime-ferrite slag
Process Temperature (°C) —	1,350	1,350	1,280-1,330	_
Second Step	—	De-Si (low C FeNi)	Converting (1st stage)	—	—
Equipment		Shaking ladle	Vertical oxygen converter (acid lining)	Two vertical oxygen converters	_
Reagent(s)	—	O_2 , burnt lime, limestone (1.2 slag basicity)	Ni Oxide/iron ore, scrap, cold crude FeNi	Lime-ferrite slag	—
Process Temperature (°C) —	1,450	1,450-1,500	—	—
Third Step	_	De-C (low C FeNi)	Converting (2nd stage)	_	_
Equipment	—	Shaking ladle	vertical oxygen Converter (basic lining)	—	
Reagent (s)	—	O_2 , burnt lime, limestone (3.0 slag basicity)	Limestone, FeSi	—	—
Process Temperature (°C		1,620	1,590-1,650	—	—
Form of Product	Granulated Bessemer matte	Ingots and granules	Ingots and pigs	Ingots	Shots (<40mm)
Comp of Product FeNi	—	Hi-C / Lo-C		—	
Ni (%)	—	18.0/21.0	25–35	35-50	20-25
Co (%)	—	0.33/0.38	0.1–0.5	<1.5	—
C (%)	—	2.22/0.011	<0.1	< 0.1	—
S (%)	—	0.01/0.008	< 0.07	< 0.07	—
Si (%)	—	2.22/0.06	< 0.05	< 0.06	—
P (%)	—	0.021/0.002	< 0.03	< 0.03	—
Cr (%)	—	1.65/0.07	< 0.3	< 0.3	—

Visit the JOM web site (http://www. tms.org/JOMPT) to access spreadsheets used to compile the tables presented in this article. Also available on-line is a spreadsheet of additional information not published in these tables.

References

1. J.P.T. Kapusta, *JOM*, 56 (7) (2004), pp. 17–23. 2. V. (Ram) Ramachandran et al., *Copper-Cobre 2003*, *Vol. IV, Pyrometallurgy of Copper-Hermann Schwarze Symposium, Book 1: Smelting Operations, Ancillary Operations and Furnace Integrity*, ed. C. Díaz, J. Kapusta, and C. Newman (Montreal, PQ, Canada: MetSoc of CIM, 2003), pp. 3–106.

3. E. Ozberk, S.A. Gendron, and G.H. Kaiura, *Nickel Metallurgy, Vol. I: Extraction and Refining of Nickel*, ed. E. Ozberg and S.W. Marcuson (Montreal, PQ, Canada: MetSoc of CIM, 1986), pp. 304–319.

4. C.A. Landolt and J.C. Taylor, *World Survey on Non-Ferrous Smelters*, ed. J.C. Taylor and H.R. Traulsen (Warrendale, PA: TMS, 1987), pp. 121–155.

5. C.S. Simmons, *Extractive Metallurgy of Nickel and Cobalt*, ed. G.P. Tyroler and C.A. Landolt (Warrendale, PA: TMS, 1988), pp. 91–134.

6. C.M. Díaz et al., Extractive Metallurgy of Nickel and

Cobalt, ed. G.P. Tyroler and C.A. Landolt (Warrendale, PA: TMS, 1988), pp. 211–239.

7. R.A. Bergman, *CIM Bulletin*, 96 (No. 1072) (June-July 2003), pp. 127–138.

8. A.D. Dalvi, W.G. Bacon, and R.C. Osborne, International Laterite Symposium—2004 Roasting and Smelting, ed. W.P. Imrie et al. (Warrendale, PA: TMS, 2004), p. 21.

9. C. Díaz, I. Holubec, and C.G. Tan, editors, *Nickel-Cobalt 97, Vol. III, Pyrometallurgical Operations, the Environment and Vessel Integrity in Nonferrous Smelting and Converting* (Montreal, PQ, Canada: The MetSoc of CIM, 1997).

10. W.P. Imrie et al., editors, *International Laterite Symposium—2004 Roasting and Smelting* (Warrendale, PA: TMS, 2004).

11. L. Ryan et al., *International Laterite Symposium—* 2004 Roasting and Smelting, ed. W.P. Imrie et al. (Warrendale, PA: TMS, 2004), pp. 699–717.

12. A. Daenuwy and A.D. Dalvi, Nickel-Cobalt 97, Vol. III, Pyrometallurgical Operations, the Environment and Vessel Integrity in Nonferrous Smelting and Converting, ed. C. Díaz, I. Holubec, and C.G. Tan (Montreal, PQ, Canada: The MetSoc of CIM, 1997), pp. 93–113.

13. N. Voermann et al., International Laterite Symposium—2004 Roasting and Smelting, ed. W.P. Imrie et al. (Warrendale, PA: TMS, 2004), pp. 563– 577.

۲

14. C.D. Bangun, W. Prenata, and A.D. Dalvi, *Pyrometallurgical Operations, the Environment and Vessel Integrity in Nonferrous Smelting and Converting,* ed. C. Díaz, I. Holubec, and C.G. Tan (Montreal, PQ, Canada: The MetSoc of CIM, 1997), pp. 93–113.

 F.A. Stober et al., International Laterite Symposium—2004 Roasting and Smelting, ed. W.P. Imrie et al. (Warrendale, PA: TMS, 2004), pp. 545– 562.

16. T. Gerritsen et al., International Laterite Symposium—2004 Roasting and Smelting, ed. W.P. Imrie et al. (Warrendale, PA: TMS, 2004), pp. 579–590.

A.E.M. Warner is Senior Consultant with WorleyParsonsHGE inToronto, Canada (Formerly with Inco Limited). C.M. Díaz is an independent consultant based in Mississauga, Canada (Formerly with Inco Limited). A.D. Dalvi is with. Inco Technical Services Limited in Mississauga, Canada, P.J. Mackey is with Falconbridge Technology Centre, Sudbury, Canada, A.V. Tarasov is with the State Research Institute of Non-Ferrous Metals "Gintsvetmet" in Moscow, Russia.

For more information, contact A.E.M. Warner, WorleyParsons HGE, Toronto, ON, Canada; (905) 637-8699; e-mail aemwarner@cogeco.ca.

۲