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Abstract: As a popular thermodynamic calculation method for binary alloys, Miedema’s model has been applied in 

many fields. Chou’s Model, a new generation of geometric model for ternary and multicomponent alloy systems, 

overcomes the intrinsic theoretical defects (including symmetric and asymmetric) existing in some original geometric 

models. Here, by means of combining Miedema’s model and Chou’s model as well as including the consideration of the 

excess entropy we attempted to build the new thermodynamic model to evaluate thermodynamic properties of ternary 

and multicomponent alloying systems in terms of the physical parameters (molar volume, electronegativity, electronic 

density and melting point) of constituents. Moreover, the activity and interaction coefficients of a wide of components 

in iron melt have been discussed in details. 
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1. Introduction  

As the fundamental physical parameters, thermodynamic parameters of alloy systems are not only important for the 

development of new techniques but also for the optimization of industrial process in many fields, such as metallurgy, 

materials, casting and welding, and so on. It is well-known that most particle systems are non-ideal alloy melt in the 

field metallurgy. Therefore, to describe accurately the thermodynamic parameters of alloy melts, it is necessary to 

replace the so-called concept of concentration with the activity [1]. In fact, the activity coefficient can be measured by 

experiments, such as vapor pressure methods, electromotive force measurements, and formation calorimetry techniques 

et al[2]. However, due to complexity and lack of accuracy, the results obtained by high temperature experiments quite 

often differ highly to some extent, resulting in the waste of time-consuming and expensive experimental processes and 

materials. Due to the difficulty in high temperature experiments, it’s thus desirable to develop theoretical methods to 

evaluate thermodynamic properties for metallurgical melts.  

Given the fact that thermodynamic behaviors in the actual alloy melts are highly complicated [3], numerous 

theoretical and empirical models have been proposed to estimate thermodynamic properties (regular solution model[4], 

Miedema’s model[5], Wilson’s model[6], Toop Model, and Chou’s model[7-8], etc.) off alloy melts during the last few 

decades. Each model has its own pros and cons. For instance, due to self-deficiency, the regular solution model[4] is only 

limited to the alloy with similar atomic volume and molecular structure. In particular, to solve the original Toop and 

other models’ symmetric and asymmetric defects, Chou [7,8] have proposed successfully a new ternary alloy model 

(called Chou’s model). This geometric model introduced a concept of “similarity criterion” with an aim of reducing the 

impacts of artificial effects. In the meanwhile, Chou’s model still provides the useful solution[7,8] to solve the intrinsic 



problem by reducing the traditional ternary models to their corresponding binary ones. 

It is clear that the Chou’s geometric model indeed establishes a bridge between binary and ternary (or 

multicomponent) systems. However, the description of ternary (or multicomponent) alloy systems has to be dependent 

on the successful description of the thermodynamic properties of binary alloys. Fortunately, there have been many 

attempts in the past to establish valid theoretical models to predict the enthalpies of formation of binary compounds. 

The earliest attempt was by Hume-Rothery et. al, who proposed empirical rules to predict the formation of alloys by 

considering the atomic size, electrochemical, and valence electron factors of constituent elements. In the early 1950s, 

Darken and Gurry constructed a two-dimensional map using the atomic size and electronegativity as the intrinsic 

parameters to predict the formation of solid solutions. In the early 1970s, Phillips et al. proposed a relationship for the 

enthalpies of formation of the covalent compounds using the ionization energy as a parameter. In the mid-1970s, 

Miedema et al. proposed a semi-empirical model to calculate the enthalpies of formation for binary transition-metal 

alloys based on the molar volume, electronegativity, and electronic density of constituent elements. Among these 

models, the Miedema's model is the most prevalent one and has been applied extensively, although the predicted values 

are often inaccurate. The validity of Miedema’s theory has led to numerous applications in solid solution, formation of 

amorphous alloy, alloy surface energy, vacancy formation energy, and Calphad, and so on.  

In this work, based on binary Miedema’s model and Chou’s model for multicomponent systems, we attempted to 

derive the theoretical formula for a series of thermodynamic properties in coupling with excess entropy introduced by 

free volume theory. In particular, in combinations of with several basic thermodynamic relations, we derived the activity 

coefficient of a solute at infinite dilution solution, ln 0γ and an activity interaction coefficient j
iε in liquid iron-base 

systems. The obtained results are also compared with available experimental data.  

2.1 Enthalpies of formation for binary systems 

Through Miedema’s model, we can calculate enthalpies of formation as follows [5]： 
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where p, q, μ, a, r/p –empirical constants; nWS – the boundary electron density of the Wigner-Seitz cell; V – molar 

Volume; φ  – electronegativity. For solid alloys a=1, liquid alloys a=0.73. 

2.2 Gibbs free energy 

Based on the enthalpies of formation specified in Eq. (1) and after the introduction of the excess entropy terms 



(excess vibrational entropy and excess configuration entropy), the excess Gibbs free energy can be further derived as a 

function of temperatures. Because the basic physical picture of the free volume theory assumes that each atom in a 

liquid metal vibrates harmonically in a cell comprised by its nearest-neighboring atoms [9], the excess vibrational 

entropy E
VIBS∆ and excess configuration entropy E

CONFS∆  can be further derived as follows, 
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Combined with the following relations: 
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From Eqs (1) – (5), we can get the excess gibbs free energy[10]: 
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where N0 –Avogadro constant; Tm, i – melting point of component i; Vi – the molar volume of component i; iβ – the 

frequency factor, in general 0.5iβ =  [11]. From the above equations Eq. (1) to Eq. (6), for any binary system the 

temperature and concentration dependent Gibbs free energies can be estimated just after knowing four basic physical 

parameters: moral volume (V), electronic densitie (nWS), electronegativity (φ ), and the melting point (Tm) of the 



constituents in binary alloys.  

2.3 Chou’ s model[7-8] 

Combining the excess Gibbs free energies from Eqs (1 to 6) for binary systems to the well-known Chou’s 

geometric model, the excess Gibbs free energy of a i-j-k system EG∆ can be obtained from the three related excess 

energy free energies of binary systems, namely, E
ijG∆ for i-j system, E

jkG∆  for j-k system, and E
kiG∆ for k-i system:  
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where , ,i j kx x x -the molar fraction of i, j, k in i-j,j-k,k-i systems; , ,ij jk kiξ ξ ξ - the similarity criterions in different 

systems. 
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Here, the sum of squared deviations of iη , jη , and kη  can be obtained by the following relations  
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2.4 Activity coefficients of ternary system 
   In a ternary system, i-j-k, the mole fractions of elements i, j, and k are denoted by xi, xj, xk. If k is considered as a 
solvent and i and j as solutes, the following relations exist at a certain temperature T; 
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When xj=0，xk→1, we obtain the activity coefficient of a solute at infinite dilution solution: 



0, 0E E
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Simplify Eq(7), we obtain: 
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The activity coefficient of a solute at infinite dilution solution, 0ln iγ can be obtained by following relation: 
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As xj=0，xk→1,  
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Combining Eqs (1), (14), and (15), we obtain, 
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2.5 Interaction parameters of i-j-k system 

   In the ternary system i-j-k, the relation for partial molar excess free energy are presented as[12], 
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And by the definition of Wagner, we obtain i
iε and j

iε
[13]: 



 
2

2
1

1

k

E
i
i

i x

G
RT x

ε
→

 ∂ ∆
=  ∂ 

                                 (18) 

2

1

1

k

E
j

i
j i x

G
RT x x

ε
→

 ∂ ∆
=   ∂ ∂ 

                                (19) 

Combine Eqs (6), (15), (18), (19): 
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3. Results and discussion  

In terms of Eqs (16) and (21), the active coefficient of 0ln iγ  and interaction coefficients of j
iε of elements in 

liquid iron-base alloys are calculated in Tables 1 and 2. Furthermore, the calculated results are compared with available 

experimental data[15] and theoretical values from literature (14). Those results calculated within the model are found to 

be reasonably close to available experimental values, seeming to have a better agreement than those in Ref. (14). The 

reason can be attributed to the success inclusion of excess entropies in this work. 



3.1 Activity coefficients of a solute at infinite dilution 0ln iγ  

Table 1 the comparison of the Calculation and Experiment Values of  

0ln iγ in Iron-Base Alloys at 1873K 

Element Sc Ti V Cr Mn Fe Co Ni Y 

Cal. ln
0
iγ  -2.95 -3.99 -1.58 -0.26 0.05 0 -0.12 -0.33 -0.49 

Cal.Ref.［14］  -3.4 -4.7 -1.88 -0.37 0.06 0 -0.14 -0.39 -0.38 

Exp[15] - -4.71 -2.3 0.0 0.36 0 -0.6 -0.42 -1.08 

Element Zr Nb Mo Tc Ru Rh Pd La Ce 

Cal.ln
0
iγ  -6.48 -3.72 -0.26 -0.63 -0.91 -1.20 -1.02 1.12 -2.25 

Cal.Ref.［14］  -7.56 -4.48 -0.55 -0.84 -1.26 -1.47 -1.57 0.87 0.23 

Exp[15] -3.30 -1.61 -0.36 - - - - 2.22 -1.14 

Element Pr Nd Pm Sm Eu Ho Er Yb Lu 

Cal.ln
0
iγ  -0.34 -3.08 -3.71 -3.49 -3.3 -3.68 -4.26 -3.82 -4.78 

Cal.Ref.［14］  0.23 0.23 -0.68 -0.38 -0.38 -0.66 -1.48 -1.45 -2.25 

Exp[15] - -1.75 - - - - - - - 

Element Hf Ta W Re Os Ir Pt Th U 

Cal.ln
0
iγ  -1.17 2.66 6.34 1.94 5.12 11.39 15.95 15.23 15.91 

Cal.Ref.［14］  -6.23 -4.28 -0.01 -0.09 -1.11 -2.44 -3.73 -3.68 -3.53 

Exp[15] - - - - - - - - - 

Element Pu Cu Ag Au Li Na K Rb Cs 

Cal.ln
0
iγ  -1.17 2.66 6.34 1.94 5.12 11.39 15.95 15.23 15.91 

Cal.Ref.［14］ -1.83 3.20 7.85 2.36 6.02 17.69 27.63 30.44 8.22 

Exp[15] - 2.15 5.30 - -  - - - 

Element Ca Sr Ba Zn Cd Hg B Al Ga 

Cal.ln
0
iγ  4.89 7.74 8.42 1.09 4.05 5.42 -5.16 -2.22 0.0087 

Cal.Ref.［14］  8.22 12.19 13.60 0.92 4.91 14.16 -6.07 -3.05 -0.51 

Exp[15] - - - - - - - -0.32 - 

Element In Tl C Si Ge Sn Pb P As 

Cal.ln
0
iγ  4.85 7.86 -6.78 -3.52 -0.72 2.96 7.91 -2.82 -3.37 

Cal.Ref.［14］ 6.07 10.22 -8.18 -4.81 -0.90 3.58 10.29 -11.07 -4.36 

Exp[15] - - - -6.63 - 1.25 6.73 - - 
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Fig 1 0ln γ of V period transition elements      Fig 2 0ln γ of rare earth transition liquid 

in in liquid iron at 1873K                     iron at 1873K 

We further compared the calculated values with available experimental data and previously theoretical values [14] in 

Figs. 1 and 2. It has been noted that the obtained results by including the term of excess entropy shows a better 

agreement with the experimental data than those values reported in Ref. [14]. In fact, the results reported in Ref. [14] 

did not include the excess entropy term. In addition, note that, if the properties of element I are similar to those of Fe, 

our currently obtained results are highly similar to those reported in Ref. [14] as evidenced in Table 1. For instance, it 

has been demonstrated that the basic parameters of Mn are highly similar to those of Fe. Therefore, we currently 

obtained ln 0
Mnγ =0.05, which is in nice agreement with the reported value of 0.06 in Ref. [14]. Again for Ni, its 

parameter is highly close to those of Fe. Hence, it has been noted that the obtained ln 0
Niγ =-0.33 is highly close to 

ln 0
Niγ =-0.39 in Ref. (14), as well as to the experimental data of -0.42. In contrast, if element i is quite different from Fe, 

then the discrepancy is large. Taking an example, those parameters of Pb is quite different from those of Fe. Therefore, 

we see that ln 0
Pbγ =7.91 is significantly smaller than the reported value of 12.29 in Ref. (14). Apparently, the former is 

much closer to the experimental value 6.73. From table 1, we conclude that it’s reasonable to consider the excess 

entropy if the difference between components in the system is intrinsically larger.  

3.2 Interaction coefficient i
jε  

Table 2 compiles the interaction parameters of , , , ,j j j j j
C Si Mn P Nε ε ε ε ε  in the iron-base alloys at 1873K. We also 

compared the experimental data, derived values from this work and from Ref. [14] in Figs. 3 and 4 for Fe-N-j system 

and Fe-C-j systems, respectively. It has been seen that in fig 3, the large discrepancies between our results and those 

from literature (14) have been observed and, importantly, ,N P
N Nε ε  is more close to experimental data than the results 

in Ref. (14). Nevertheless, , ,As Sb Bi
N N Nε ε ε  are in good agreement with the reported values in literatures.  This is 



mainly because the metallic properties of As, Sb, and Bi increase. In comparison with N and P, the properties of these 

elements are much more similar with Fe. Because non-metal elements such as N and P are different from Fe, the 

interaction force of their alloys would be highly strong. The origins can be ascribed not only to the large differences in 

their atomic radius but also to the intrinsic electronic difference. Definitely, the substantial difference results in the 

change of entropy. Therefore, the entropies have to be considered for these systems, in particular, for the cases of 

non-metal and metal alloy melts. 

Table 2 Compaison between calculation and experimental data of interaction parameters in liquid iron-base alloys at 
1873K 

j 

C
jε  

P
jε  

N
jε  

Mn
jε  

Si
jε  

Cal 
Exp
［16］ 

Cal Exp［16］ Cal Exp［16］ Cal Exp［16］ Cal Exp［16］ 

Ag -4.3 12 -15.4 - -7.3 - -5.1 - -7 - 

Al 5.3 5.3 8.3 4.7 3.2 1.6 -3.1 - 6.37 7.0 

As 8.3 - 15 - 13 - -4.3 - 17 - 

B 13.2 12 20 1.5 20 5.0 -1.9 -0.89 10.3 9.5 

Ba -25 - -29 - -47 - -3.6 - -27 - 

Bi -3.3 - 2.7 - -7.0 - -14 - -0.72 - 

C 13.8 13 19.5 7.0 32 7.2 -4.7 -1.9 7.4 9.8 

Ca -17.6 -16 -16 - -37 - -2.9 - -14 -11 

Ce -20 -59 -15.4 - -40 -515 -1.32 21 -10.3 - 

Co 1.93 1.8 1.32 0.92 2.2 2.9 -1.07 -0.93 -0.94 - 

Cr -3.7 -4.9 -3.2 -3.8 -3.7 -9.8 0.89 0.90 -0.73 0.034 

Cu -1.6 4.0 0.98 -9.3 -3.2 2.2 -2.3 - -0.95 3.6 

Hf -14 - -10 - -26 -280 3.5 3.4 -2.3 - 

La -27 -59 -11.3 - -40 -515 -3.4 63 -2.0 - 

Mg -3.2 8.2 -2.75 - -25 - -4.7 - -3.2 - 

Mn -5.6 -1.9 -5.4 -7.2 -10 -4.5 -0.14 0.016 -4.1 -3.3 

Mo -7.2 -6.1 -1.92 -0.32 -3 -5.1 2.3 1.1 0.92 - 

N 2.8 7.2 10.9 8.0 15 0.75 -6.3 -4.5 10.3 -6.1 

Nb -10.7 -23 -4.7 -5.3 -15 -27 4.7 2.1 1.2 -0.66 

Ni 2.2 2.4 2.1 0.68 4.0 1.6 -1.8 -1.8 1.32 1.2 

P 21 7.0 24 7.3 18 8.0 -5.3 -7.2 16 12 

Pb 5.6 5.7 4.53 6.7 -9.3 - -17 -5.2 -1.9 6.1 

Pt 5.9 - 6.3 - 10 - -3.6 - 0.75 - 

Sb 3.4 6.2 7.5 - 1.9 3.2 -8.4 - 4.5 - 

Si 10.73 9.7 16 12 8.3 6.1 -2.9 -3.3 13 12 

Sn 6.73 9.7 6.2 5.0 -1.6 2.3 -7.3 - 7.4 7.1 

Sr -27 - -13 - -39 - -4.2 - -30 - 

Ta -69 - -3.7 - -20 -39 3.9 -0.38 0.89 27 

Ti -12 -31 -7.4 -7.2 -24 -118 3.2 -9.7 -3.2 240 

V -7.4 -6.1 -4.9 -4.9 -19 -26 1.42 1.3 9.4 5.3 

W -10.8 -6.5 -0.88 -20 -2.7 -3.8 2.4 3.1 1.0 - 

Zn 2.5 - 7.2 - -0.19 - -3.6 - 3.8 - 

Zr -18 - -19.3 - -27 236 3.4 3.0 -4 - 
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4. Conclusions  

On the basis of Chou’s model and Miedema’s mode as well as the excess entropy, we have established a new model 

to predict the thermodynamic properties of the metal solution. The formulas for calculating the excess Gibbs free 

energy E
ijG∆ , the activity coefficients of a solute at infinite dilution, 0ln iγ , as well as interaction 

parameters , i j
i iandε ε , in alloy melts have been proposed. The results indicate that the excess entropy need to be 

considered for both dilution solution and regular solution for alloy melts. 
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